You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3DPrinterMadeInPlateformeC/Moteur DC/DC_servo/DC_1servo/DC_1servo.ino

210 lines
7.3 KiB

/* This one is not using any PinChangeInterrupt library */
/*
This program uses an Arduino for a closed-loop control of a DC-motor.
Motor motion is detected by a quadrature encoder.
Two inputs named STEP and DIR allow changing the target position.
Serial port prints current position and target position every second.
Serial input can be used to feed a new location for the servo (no CR LF).
Pins used:
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
Digital input 3 is the STEP input.
Analog input 0 is the DIR input.
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
Please note PID gains kp, ki, kd need to be tuned to each different setup.
*/
#include <EEPROM.h>
#include "PID_v1.h"
#define encoder0PinA 2 // PD2;
#define encoder0PinB 8 // PC0;
#define M1 9
#define M2 10 // motor's PWM outputs
byte pos[1000]; int p = 0;
double kp = 3, ki = 0, kd = 0.0;
double input = 0, output = 0, setpoint = 0;
PID myPID(&input, &output, &setpoint, kp, ki, kd, DIRECT);
volatile long encoder0Pos = 0;
boolean auto1 = false, auto2 = false, counting = false;
long previousMillis = 0; // will store last time LED was updated
long target1 = 0; // destination location at any moment
//for motor control ramps 1.4
bool newStep = false;
bool oldStep = false;
bool dir = false;
byte skip = 0;
// Install Pin change interrupt for a pin, can be called multiple times
void pciSetup(byte pin)
{
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
void setup() {
pinMode(encoder0PinA, INPUT);
pinMode(encoder0PinB, INPUT);
digitalWrite(encoder0PinA, HIGH);
digitalWrite(encoder0PinB, HIGH); // active pullup ou pulldown
digitalWrite(3, HIGH); // active pullup sur entree steep
pciSetup(encoder0PinB);
attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 2
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM
Serial.begin (115200);
help();
recoverPIDfromEEPROM();
//Setup the pid
myPID.SetMode(AUTOMATIC);
myPID.SetSampleTime(1);
myPID.SetOutputLimits(-255, 255);
}
void loop() {
input = encoder0Pos;
setpoint = target1;
myPID.Compute();
if (Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly
pwmOut(output);
if (auto1) if (millis() % 3000 == 0) {
target1 = random(50000); // that was for self test with no input from main controller
//Serial.println("----------------------------------");
}
if (auto2) if (millis() % 1000 == 0) printPos();
//if(counting && abs(input-target1)<15) counting=false;
if (counting && (skip++ % 5) == 0 ) {
pos[p] = encoder0Pos;
if (p < 999) p++;
else counting = false;
}
}
void pwmOut(int out) {
if (out < 0) {
analogWrite(M1, 0);
analogWrite(M2, abs(out));
}
else {
analogWrite(M2, 0);
analogWrite(M1, abs(out));
}
}
const int QEM [16] = {0, -1, 1, 2, 1, 0, 2, -1, -1, 2, 0, 1, 2, 1, -1, 0}; // Quadrature Encoder Matrix
static unsigned char New, Old;
ISR (PCINT0_vect) { // handle pin change interrupt for D8
Old = New;
New = (PINB & 1 ) + ((PIND & 4) >> 1); //
//Serial.print(".");
encoder0Pos += QEM [Old * 4 + New];
}
void encoderInt() { // handle pin change interrupt for D2
Old = New;
New = (PINB & 1 ) + ((PIND & 4) >> 1); //
encoder0Pos += QEM [Old * 4 + New];
//Serial.print(":");
}
void countStep() {
if (PINC & B0000001) target1--; // pin A0 represents direction
else target1++;
}
void process_line() {
char cmd = Serial.read();
if (cmd > 'Z') cmd -= 32;
switch (cmd) {
case 'P': kp = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case 'D': kd = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case 'I': ki = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case '?': printPos(); break;
case 'X': target1 = Serial.parseInt(); p = 0; counting = true; for (int i = 0; i < 300; i++) pos[i] = 0; break;
case 'T': auto1 = !auto1; break;
case 'A': auto2 = !auto2; break;
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break;
case 'H': help(); break;
case 'W': writetoEEPROM(); break;
case 'K': eedump(); break;
case 'R': recoverPIDfromEEPROM() ; break;
case 'S': for (int i = 0; i < p; i++) Serial.println(pos[i]); break;
}
while (Serial.read() != 10); // dump extra characters till LF is seen (you can use CRLF or just LF)
}
void printPos() {
Serial.print(F(" PID_output=")); Serial.print(output);
Serial.print(F(" Position->"));
Serial.print(encoder0Pos); Serial.print(F(":")); Serial.print(setpoint);
Serial.print(F("<-Target"));
Serial.print(F(" Diff: "));
Serial.println(encoder0Pos - setpoint);
}
void help() {
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
Serial.println(F("by misan"));
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
Serial.println(F("P123.34 sets proportional term to 123.34"));
Serial.println(F("I123.34 sets integral term to 123.34"));
Serial.println(F("D123.34 sets derivative term to 123.34"));
Serial.println(F("? prints out current encoder, output and setpoint values"));
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
Serial.println(F("Q will print out the current values of P, I and D parameters"));
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
Serial.println(F("H will print this help message again"));
Serial.println(F("A will toggle on/off showing regulator status every second\n"));
}
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
eeput(kp, 0);
eeput(ki, 4);
eeput(kd, 8);
double cks = 0;
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
eeput(cks, 12);
Serial.println("\nPID values stored to EEPROM");
//Serial.println(cks);
}
void recoverPIDfromEEPROM() {
double cks = 0;
double cksEE;
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
cksEE = eeget(12);
//Serial.println(cks);
if (cks == cksEE) {
Serial.println(F("*** Found PID values on EEPROM"));
kp = eeget(0);
ki = eeget(4);
kd = eeget(8);
myPID.SetTunings(kp, ki, kd);
}
else Serial.println(F("*** Bad checksum"));
}
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
char * addr = (char * ) &value;
for (int i = dir; i < dir + 4; i++) EEPROM.write(i, addr[i - dir]);
}
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
double value;
char * addr = (char * ) &value;
for (int i = dir; i < dir + 4; i++) addr[i - dir] = EEPROM.read(i);
return value;
}
void eedump() {
for (int i = 0; i < 16; i++) {
Serial.print(EEPROM.read(i), HEX);
Serial.print(" ");
} Serial.println();
}