commit
584173fef0
@ -0,0 +1,81 @@
|
||||
|
||||
/*
|
||||
This program uses an Arduino for a closed-loop control of a DC-motor.
|
||||
Motor motion is detected by a quadrature encoder.
|
||||
Two inputs named STEP and DIR allow changing the target position.
|
||||
Serial port prints current position and target position every second.
|
||||
Serial input can be used to feed a new location for the servo (no CR LF).
|
||||
|
||||
Pins used:
|
||||
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
|
||||
Digital input 3 is the STEP input.
|
||||
Analog input 0 is the DIR input.
|
||||
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
|
||||
|
||||
|
||||
Please note PID gains kp, ki, kd need to be tuned to each different setup.
|
||||
*/
|
||||
|
||||
#include <PinChangeInt.h>
|
||||
#include <PinChangeIntConfig.h>
|
||||
#include <PID_v1.h>
|
||||
#include <PID_AutoTune_v0.h>
|
||||
#define encoder0PinA 2 // PD2;
|
||||
#define encoder0PinB 8 // PC0;
|
||||
#define M1 6
|
||||
#define M2 5 // motor's PWM outputs
|
||||
|
||||
|
||||
double kp=4,ki=100,kd=0.02;
|
||||
double input=80, output=0, setpoint=180;
|
||||
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
|
||||
long target1=0; // destination location at any moment
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
PCintPort::attachInterrupt(encoder0PinB, doEncoderMotor0,CHANGE); // now with 4x resolution as we use the two edges of A & B pins
|
||||
attachInterrupt(0, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
|
||||
TCCR1B = TCCR1B & 0b11111000 | 1; // set Hz PWM
|
||||
Serial.begin (115200);
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
myPID.SetSampleTime(1);
|
||||
myPID.SetOutputLimits(-255,255);
|
||||
}
|
||||
|
||||
void loop(){
|
||||
input = encoder0Pos;
|
||||
setpoint=target1;
|
||||
myPID.Compute();
|
||||
// interpret received data as an integer (no CR LR): provision for manual testing over the serial port
|
||||
if(Serial.available()) target1=Serial.parseInt();
|
||||
pwmOut(output);
|
||||
// if(millis() % 3000 == 0) target1=random(2000); // that was for self test with no input from main controller
|
||||
}
|
||||
|
||||
void pwmOut(int out) {
|
||||
if(out<0) { analogWrite(M1,0); analogWrite(M2,abs(out)); }
|
||||
else { analogWrite(M2,0); analogWrite(M1,abs(out)); }
|
||||
}
|
||||
|
||||
const int QEM [16] = {0,-1,1,2,1,0,2,-1,-1,2,0,1,2,1,-1,0}; // Quadrature Encoder Matrix
|
||||
static unsigned char New, Old;
|
||||
void doEncoderMotor0(){
|
||||
Old = New;
|
||||
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
|
||||
encoder0Pos+= QEM [Old * 4 + New];
|
||||
}
|
||||
|
||||
void countStep(){ if (PINC&B0000001) target1--;else target1++; } // pin A0 represents direction
|
||||
|
@ -0,0 +1,182 @@
|
||||
|
||||
/*
|
||||
This program uses an Arduino for a closed-loop control of a DC-motor.
|
||||
Motor motion is detected by a quadrature encoder.
|
||||
Two inputs named STEP and DIR allow changing the target position.
|
||||
Serial port prints current position and target position every second.
|
||||
Serial input can be used to feed a new location for the servo (no CR LF).
|
||||
|
||||
Pins used:
|
||||
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
|
||||
Digital input 3 is the STEP input.
|
||||
Analog input 0 is the DIR input.
|
||||
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
|
||||
|
||||
|
||||
Please note PID gains kp, ki, kd need to be tuned to each different setup.
|
||||
*/
|
||||
|
||||
#include <PinChangeInt.h>
|
||||
#include <PinChangeIntConfig.h>
|
||||
#include <PID_v1.h>
|
||||
#include <PID_AutoTune_v0.h>
|
||||
#define encoder0PinA 2 // PD2;
|
||||
#define encoder0PinB 8 // PC0;
|
||||
#define M1 6
|
||||
#define M2 5 // motor's PWM outputs
|
||||
|
||||
byte ATuneModeRemember=2;
|
||||
double kp=5,ki=300,kd=0.02;
|
||||
double input=80, output=0, setpoint=180;
|
||||
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
double kpmodel=1.5, taup=100, theta[50];
|
||||
double outputStart=5;
|
||||
double aTuneStep=50, aTuneNoise=1, aTuneStartValue=100;
|
||||
unsigned int aTuneLookBack=20;
|
||||
|
||||
boolean tuning = true;
|
||||
unsigned long modelTime, serialTime;
|
||||
PID_ATune aTune(&input, &output);
|
||||
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
|
||||
long target1=0; // destination location at any moment
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
tuning=false;
|
||||
changeAutoTune();
|
||||
tuning=true;
|
||||
}
|
||||
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
PCintPort::attachInterrupt(encoder0PinB, doEncoderMotor0,CHANGE); // now with 4x resolution as we use the two edges of A & B pins
|
||||
attachInterrupt(0, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
|
||||
TCCR1B = TCCR1B & 0b11111000 | 1; // set Hz PWM
|
||||
Serial.begin (115200);
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
myPID.SetSampleTime(1);
|
||||
myPID.SetOutputLimits(-255,255);
|
||||
}
|
||||
|
||||
void loop(){
|
||||
input = encoder0Pos;
|
||||
setpoint=target1;
|
||||
myPID.Compute();
|
||||
// interpret received data as an integer (no CR LR): provision for manual testing over the serial port
|
||||
if(Serial.available()) target1=Serial.parseInt();
|
||||
pwmOut(output);
|
||||
// if(millis() % 3000 == 0) target1=random(2000); // that was for self test with no input from main controller
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
byte val = (aTune.Runtime());
|
||||
if (val!=0)
|
||||
{
|
||||
tuning = false;
|
||||
}
|
||||
if(!tuning)
|
||||
{ //we're done, set the tuning parameters
|
||||
kp = aTune.GetKp();
|
||||
ki = aTune.GetKi();
|
||||
kd = aTune.GetKd();
|
||||
Serial.print("kp: ");Serial.print(myPID.GetKp());Serial.print(" ");
|
||||
Serial.print("ki: ");Serial.print(myPID.GetKi());Serial.print(" ");
|
||||
Serial.print("kd: ");Serial.print(myPID.GetKd());Serial.println();
|
||||
myPID.SetTunings(kp,ki,kd);
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
|
||||
//send-receive with processing if it's time
|
||||
if(millis()>serialTime)
|
||||
{
|
||||
SerialReceive();
|
||||
SerialSend();
|
||||
serialTime+=500;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void changeAutoTune()
|
||||
{
|
||||
if(!tuning)
|
||||
{
|
||||
//Set the output to the desired starting frequency.
|
||||
output=aTuneStartValue;
|
||||
aTune.SetNoiseBand(aTuneNoise);
|
||||
aTune.SetOutputStep(aTuneStep);
|
||||
aTune.SetLookbackSec((int)aTuneLookBack);
|
||||
AutoTuneHelper(true);
|
||||
tuning = true;
|
||||
}
|
||||
else
|
||||
{ //cancel autotune
|
||||
aTune.Cancel();
|
||||
tuning = false;
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
|
||||
void AutoTuneHelper(boolean start)
|
||||
{
|
||||
if(start)
|
||||
ATuneModeRemember = myPID.GetMode();
|
||||
else
|
||||
myPID.SetMode(ATuneModeRemember);
|
||||
}
|
||||
|
||||
|
||||
void SerialSend()
|
||||
{
|
||||
Serial.print("setpoint: ");Serial.print(setpoint); Serial.print(" ");
|
||||
Serial.print("input: ");Serial.print(input); Serial.print(" ");
|
||||
Serial.print("output: ");Serial.print(output); Serial.print(" ");
|
||||
if(tuning){
|
||||
Serial.println("tuning mode");
|
||||
} else {
|
||||
Serial.print("kp: ");Serial.print(myPID.GetKp());Serial.print(" ");
|
||||
Serial.print("ki: ");Serial.print(myPID.GetKi());Serial.print(" ");
|
||||
Serial.print("kd: ");Serial.print(myPID.GetKd());Serial.println();
|
||||
}
|
||||
}
|
||||
|
||||
void SerialReceive()
|
||||
{
|
||||
if(Serial.available())
|
||||
{
|
||||
char b = Serial.read();
|
||||
Serial.flush();
|
||||
if((b=='1' && !tuning) || (b!='1' && tuning))changeAutoTune();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pwmOut(int out) {
|
||||
if(out<0) { analogWrite(M1,0); analogWrite(M2,abs(out)); }
|
||||
else { analogWrite(M2,0); analogWrite(M1,abs(out)); }
|
||||
}
|
||||
|
||||
const int QEM [16] = {0,-1,1,2,1,0,2,-1,-1,2,0,1,2,1,-1,0}; // Quadrature Encoder Matrix
|
||||
static unsigned char New, Old;
|
||||
void doEncoderMotor0(){
|
||||
Old = New;
|
||||
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
|
||||
encoder0Pos+= QEM [Old * 4 + New];
|
||||
}
|
||||
|
||||
void countStep(){ if (PINC&B0000001) target1--;else target1++; } // pin A0 represents direction
|
||||
|
Loading…
Reference in new issue