/* This one is not using any PinChangeInterrupt library */ /* This program uses an Arduino for a closed-loop control of a DC-motor. Motor motion is detected by a quadrature encoder. Two inputs named STEP and DIR allow changing the target position. Serial port prints current position and target position every second. Serial input can be used to feed a new location for the servo (no CR LF). Pins used: Digital inputs 2 & 8 are connected to the two encoder signals (AB). Digital input 3 is the STEP input. Analog input 0 is the DIR input. Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here). Please note PID gains kp, ki, kd need to be tuned to each different setup. */ #include #include "PID_v1.h" #define encoder0PinA 7 // PD2; #define encoder0PinB 8 // PC0; #define M1 9 #define M2 10 // motor's PWM outputs byte pos[1000]; int p = 0; double kp = 3, ki = 0, kd = 0.0; double input = 0, output = 0, setpoint = 0; PID myPID(&input, &output, &setpoint, kp, ki, kd, DIRECT); volatile long encoder0Pos = 0; boolean auto1 = false, auto2 = false, counting = false; long previousMillis = 0; // will store last time LED was updated long target1 = 0; // destination location at any moment //for motor control ramps 1.4 bool newStep = false; bool oldStep = false; bool dir = false; byte skip = 0; // Install Pin change interrupt for a pin, can be called multiple times void pciSetup(byte pin) { *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group } void setup() { pinMode(encoder0PinA, INPUT); pinMode(encoder0PinB, INPUT); digitalWrite(encoder0PinA, HIGH); digitalWrite(encoder0PinB, HIGH); // active pullup ou pulldown digitalWrite(3, HIGH); // active pullup sur entree steep pciSetup(encoder0PinB); attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 2 attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3 TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM Serial.begin (115200); help(); recoverPIDfromEEPROM(); //Setup the pid myPID.SetMode(AUTOMATIC); myPID.SetSampleTime(1); myPID.SetOutputLimits(-255, 255); } void loop() { input = encoder0Pos; setpoint = target1; myPID.Compute(); if (Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly pwmOut(output); if (auto1) if (millis() % 3000 == 0) { target1 = random(50000); // that was for self test with no input from main controller //Serial.println("----------------------------------"); } if (auto2) if (millis() % 1000 == 0) printPos(); //if(counting && abs(input-target1)<15) counting=false; if (counting && (skip++ % 5) == 0 ) { pos[p] = encoder0Pos; if (p < 999) p++; else counting = false; } } void pwmOut(int out) { if (out < 0) { analogWrite(M1, 0); analogWrite(M2, abs(out)); } else { analogWrite(M2, 0); analogWrite(M1, abs(out)); } } const int QEM [16] = {0, -1, 1, 2, 1, 0, 2, -1, -1, 2, 0, 1, 2, 1, -1, 0}; // Quadrature Encoder Matrix static unsigned char New, Old; ISR (PCINT0_vect) { // handle pin change interrupt for D8 Old = New; New = (PINB & 1 ) + ((PIND & 4) >> 1); // //Serial.print("."); encoder0Pos += QEM [Old * 4 + New]; } void encoderInt() { // handle pin change interrupt for D2 Old = New; New = (PINB & 1 ) + ((PIND & 4) >> 1); // encoder0Pos += QEM [Old * 4 + New]; //Serial.print(":"); } void countStep() { if (PINC & B0000001) target1--; // pin A0 represents direction else target1++; } void process_line() { char cmd = Serial.read(); if (cmd > 'Z') cmd -= 32; switch (cmd) { case 'P': kp = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break; case 'D': kd = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break; case 'I': ki = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break; case '?': printPos(); break; case 'X': target1 = Serial.parseInt(); p = 0; counting = true; for (int i = 0; i < 300; i++) pos[i] = 0; break; case 'T': auto1 = !auto1; break; case 'A': auto2 = !auto2; break; case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break; case 'H': help(); break; case 'W': writetoEEPROM(); break; case 'K': eedump(); break; case 'R': recoverPIDfromEEPROM() ; break; case 'S': for (int i = 0; i < p; i++) Serial.println(pos[i]); break; } while (Serial.read() != 10); // dump extra characters till LF is seen (you can use CRLF or just LF) } void printPos() { Serial.print(F(" PID_output=")); Serial.print(output); Serial.print(F(" Position->")); Serial.print(encoder0Pos); Serial.print(F(":")); Serial.print(setpoint); Serial.print(F("<-Target")); Serial.print(F(" Diff: ")); Serial.println(encoder0Pos - setpoint); } void help() { Serial.println(F("\nPID DC motor controller and stepper interface emulator")); Serial.println(F("by misan")); Serial.println(F("Available serial commands: (lines end with CRLF or LF)")); Serial.println(F("P123.34 sets proportional term to 123.34")); Serial.println(F("I123.34 sets integral term to 123.34")); Serial.println(F("D123.34 sets derivative term to 123.34")); Serial.println(F("? prints out current encoder, output and setpoint values")); Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses")); Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that")); Serial.println(F("Q will print out the current values of P, I and D parameters")); Serial.println(F("W will store current values of P, I and D parameters into EEPROM")); Serial.println(F("H will print this help message again")); Serial.println(F("A will toggle on/off showing regulator status every second\n")); } void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off eeput(kp, 0); eeput(ki, 4); eeput(kd, 8); double cks = 0; for (int i = 0; i < 12; i++) cks += EEPROM.read(i); eeput(cks, 12); Serial.println("\nPID values stored to EEPROM"); //Serial.println(cks); } void recoverPIDfromEEPROM() { double cks = 0; double cksEE; for (int i = 0; i < 12; i++) cks += EEPROM.read(i); cksEE = eeget(12); //Serial.println(cks); if (cks == cksEE) { Serial.println(F("*** Found PID values on EEPROM")); kp = eeget(0); ki = eeget(4); kd = eeget(8); myPID.SetTunings(kp, ki, kd); } else Serial.println(F("*** Bad checksum")); } void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-( char * addr = (char * ) &value; for (int i = dir; i < dir + 4; i++) EEPROM.write(i, addr[i - dir]); } double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-( double value; char * addr = (char * ) &value; for (int i = dir; i < dir + 4; i++) addr[i - dir] = EEPROM.read(i); return value; } void eedump() { for (int i = 0; i < 16; i++) { Serial.print(EEPROM.read(i), HEX); Serial.print(" "); } Serial.println(); }