parent
34e15834f7
commit
27dc04b1ba
Binary file not shown.
@ -0,0 +1,209 @@
|
||||
/* This one is not using any PinChangeInterrupt library */
|
||||
|
||||
/*
|
||||
This program uses an Arduino for a closed-loop control of a DC-motor.
|
||||
Motor motion is detected by a quadrature encoder.
|
||||
Two inputs named STEP and DIR allow changing the target position.
|
||||
Serial port prints current position and target position every second.
|
||||
Serial input can be used to feed a new location for the servo (no CR LF).
|
||||
|
||||
Pins used:
|
||||
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
|
||||
Digital input 3 is the STEP input.
|
||||
Analog input 0 is the DIR input.
|
||||
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
|
||||
Please note PID gains kp, ki, kd need to be tuned to each different setup.
|
||||
*/
|
||||
#include <EEPROM.h>
|
||||
#include "PID_v1.h"
|
||||
#define encoder0PinA 2 // PD2;
|
||||
#define encoder0PinB 8 // PC0;
|
||||
#define M1 9
|
||||
#define M2 10 // motor's PWM outputs
|
||||
|
||||
byte pos[1000]; int p = 0;
|
||||
|
||||
double kp = 3, ki = 0, kd = 0.0;
|
||||
double input = 0, output = 0, setpoint = 0;
|
||||
PID myPID(&input, &output, &setpoint, kp, ki, kd, DIRECT);
|
||||
volatile long encoder0Pos = 0;
|
||||
boolean auto1 = false, auto2 = false, counting = false;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
|
||||
long target1 = 0; // destination location at any moment
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
byte skip = 0;
|
||||
|
||||
// Install Pin change interrupt for a pin, can be called multiple times
|
||||
void pciSetup(byte pin)
|
||||
{
|
||||
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
|
||||
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
|
||||
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
|
||||
}
|
||||
|
||||
void setup() {
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
digitalWrite(encoder0PinA, HIGH);
|
||||
digitalWrite(encoder0PinB, HIGH); // active pullup ou pulldown
|
||||
digitalWrite(3, HIGH); // active pullup sur entree steep
|
||||
pciSetup(encoder0PinB);
|
||||
attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
|
||||
TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM
|
||||
Serial.begin (115200);
|
||||
help();
|
||||
recoverPIDfromEEPROM();
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
myPID.SetSampleTime(1);
|
||||
myPID.SetOutputLimits(-255, 255);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
input = encoder0Pos;
|
||||
setpoint = target1;
|
||||
myPID.Compute();
|
||||
if (Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly
|
||||
pwmOut(output);
|
||||
if (auto1) if (millis() % 3000 == 0) {
|
||||
target1 = random(50000); // that was for self test with no input from main controller
|
||||
//Serial.println("----------------------------------");
|
||||
}
|
||||
if (auto2) if (millis() % 1000 == 0) printPos();
|
||||
//if(counting && abs(input-target1)<15) counting=false;
|
||||
if (counting && (skip++ % 5) == 0 ) {
|
||||
pos[p] = encoder0Pos;
|
||||
if (p < 999) p++;
|
||||
else counting = false;
|
||||
}
|
||||
}
|
||||
void pwmOut(int out) {
|
||||
if (out < 0) {
|
||||
analogWrite(M1, 0);
|
||||
analogWrite(M2, abs(out));
|
||||
|
||||
|
||||
}
|
||||
else {
|
||||
analogWrite(M2, 0);
|
||||
analogWrite(M1, abs(out));
|
||||
}
|
||||
}
|
||||
|
||||
const int QEM [16] = {0, -1, 1, 2, 1, 0, 2, -1, -1, 2, 0, 1, 2, 1, -1, 0}; // Quadrature Encoder Matrix
|
||||
static unsigned char New, Old;
|
||||
ISR (PCINT0_vect) { // handle pin change interrupt for D8
|
||||
Old = New;
|
||||
New = (PINB & 1 ) + ((PIND & 4) >> 1); //
|
||||
//Serial.print(".");
|
||||
encoder0Pos += QEM [Old * 4 + New];
|
||||
}
|
||||
void encoderInt() { // handle pin change interrupt for D2
|
||||
Old = New;
|
||||
New = (PINB & 1 ) + ((PIND & 4) >> 1); //
|
||||
encoder0Pos += QEM [Old * 4 + New];
|
||||
//Serial.print(":");
|
||||
}
|
||||
|
||||
|
||||
void countStep() {
|
||||
if (PINC & B0000001) target1--; // pin A0 represents direction
|
||||
else target1++;
|
||||
}
|
||||
|
||||
void process_line() {
|
||||
char cmd = Serial.read();
|
||||
if (cmd > 'Z') cmd -= 32;
|
||||
switch (cmd) {
|
||||
case 'P': kp = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
|
||||
case 'D': kd = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
|
||||
case 'I': ki = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
|
||||
case '?': printPos(); break;
|
||||
case 'X': target1 = Serial.parseInt(); p = 0; counting = true; for (int i = 0; i < 300; i++) pos[i] = 0; break;
|
||||
case 'T': auto1 = !auto1; break;
|
||||
case 'A': auto2 = !auto2; break;
|
||||
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break;
|
||||
case 'H': help(); break;
|
||||
case 'W': writetoEEPROM(); break;
|
||||
case 'K': eedump(); break;
|
||||
case 'R': recoverPIDfromEEPROM() ; break;
|
||||
case 'S': for (int i = 0; i < p; i++) Serial.println(pos[i]); break;
|
||||
}
|
||||
while (Serial.read() != 10); // dump extra characters till LF is seen (you can use CRLF or just LF)
|
||||
}
|
||||
|
||||
void printPos() {
|
||||
Serial.print(F(" PID_output=")); Serial.print(output);
|
||||
Serial.print(F(" Position->"));
|
||||
Serial.print(encoder0Pos); Serial.print(F(":")); Serial.print(setpoint);
|
||||
Serial.print(F("<-Target"));
|
||||
Serial.print(F(" Diff: "));
|
||||
Serial.println(encoder0Pos - setpoint);
|
||||
}
|
||||
void help() {
|
||||
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
|
||||
Serial.println(F("by misan"));
|
||||
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
|
||||
Serial.println(F("P123.34 sets proportional term to 123.34"));
|
||||
Serial.println(F("I123.34 sets integral term to 123.34"));
|
||||
Serial.println(F("D123.34 sets derivative term to 123.34"));
|
||||
Serial.println(F("? prints out current encoder, output and setpoint values"));
|
||||
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
|
||||
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
|
||||
Serial.println(F("Q will print out the current values of P, I and D parameters"));
|
||||
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
|
||||
Serial.println(F("H will print this help message again"));
|
||||
Serial.println(F("A will toggle on/off showing regulator status every second\n"));
|
||||
}
|
||||
|
||||
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
|
||||
eeput(kp, 0);
|
||||
eeput(ki, 4);
|
||||
eeput(kd, 8);
|
||||
double cks = 0;
|
||||
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
|
||||
eeput(cks, 12);
|
||||
Serial.println("\nPID values stored to EEPROM");
|
||||
//Serial.println(cks);
|
||||
}
|
||||
|
||||
void recoverPIDfromEEPROM() {
|
||||
double cks = 0;
|
||||
double cksEE;
|
||||
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
|
||||
cksEE = eeget(12);
|
||||
//Serial.println(cks);
|
||||
if (cks == cksEE) {
|
||||
Serial.println(F("*** Found PID values on EEPROM"));
|
||||
kp = eeget(0);
|
||||
ki = eeget(4);
|
||||
kd = eeget(8);
|
||||
myPID.SetTunings(kp, ki, kd);
|
||||
}
|
||||
else Serial.println(F("*** Bad checksum"));
|
||||
}
|
||||
|
||||
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
|
||||
char * addr = (char * ) &value;
|
||||
for (int i = dir; i < dir + 4; i++) EEPROM.write(i, addr[i - dir]);
|
||||
}
|
||||
|
||||
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
|
||||
double value;
|
||||
char * addr = (char * ) &value;
|
||||
for (int i = dir; i < dir + 4; i++) addr[i - dir] = EEPROM.read(i);
|
||||
return value;
|
||||
}
|
||||
|
||||
void eedump() {
|
||||
for (int i = 0; i < 16; i++) {
|
||||
Serial.print(EEPROM.read(i), HEX);
|
||||
Serial.print(" ");
|
||||
} Serial.println();
|
||||
}
|
@ -0,0 +1,186 @@
|
||||
/**********************************************************************************************
|
||||
* Arduino PID Library - Version 1
|
||||
* by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
|
||||
*
|
||||
* This Code is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
|
||||
**********************************************************************************************/
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "PID_v1.h"
|
||||
|
||||
/*Constructor (...)*********************************************************
|
||||
* The parameters specified here are those for for which we can't set up
|
||||
* reliable defaults, so we need to have the user set them.
|
||||
***************************************************************************/
|
||||
PID::PID(double* Input, double* Output, double* Setpoint,
|
||||
double Kp, double Ki, double Kd, int ControllerDirection)
|
||||
{
|
||||
PID::SetOutputLimits(0, 255); //default output limit corresponds to
|
||||
//the arduino pwm limits
|
||||
|
||||
SampleTime = 100; //default Controller Sample Time is 0.1 seconds
|
||||
|
||||
PID::SetControllerDirection(ControllerDirection);
|
||||
PID::SetTunings(Kp, Ki, Kd);
|
||||
|
||||
lastTime = millis()-SampleTime;
|
||||
inAuto = false;
|
||||
myOutput = Output;
|
||||
myInput = Input;
|
||||
mySetpoint = Setpoint;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Compute() **********************************************************************
|
||||
* This, as they say, is where the magic happens. this function should be called
|
||||
* every time "void loop()" executes. the function will decide for itself whether a new
|
||||
* pid Output needs to be computed
|
||||
**********************************************************************************/
|
||||
void PID::Compute()
|
||||
{
|
||||
if(!inAuto) return;
|
||||
unsigned long now = millis();
|
||||
int timeChange = (now - lastTime);
|
||||
if(timeChange>=SampleTime)
|
||||
{
|
||||
/*Compute all the working error variables*/
|
||||
double input = *myInput;
|
||||
double error = *mySetpoint - input;
|
||||
ITerm+= (ki * error);
|
||||
if(ITerm > outMax) ITerm= outMax;
|
||||
else if(ITerm < outMin) ITerm= outMin;
|
||||
double dInput = (input - lastInput);
|
||||
|
||||
/*Compute PID Output*/
|
||||
double output = kp * error + ITerm- kd * dInput;
|
||||
|
||||
if(output > outMax) output = outMax;
|
||||
else if(output < outMin) output = outMin;
|
||||
*myOutput = output;
|
||||
|
||||
/*Remember some variables for next time*/
|
||||
lastInput = input;
|
||||
lastTime = now;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* SetTunings(...)*************************************************************
|
||||
* This function allows the controller's dynamic performance to be adjusted.
|
||||
* it's called automatically from the constructor, but tunings can also
|
||||
* be adjusted on the fly during normal operation
|
||||
******************************************************************************/
|
||||
void PID::SetTunings(double Kp, double Ki, double Kd)
|
||||
{
|
||||
if (Kp<0 || Ki<0 || Kd<0) return;
|
||||
|
||||
dispKp = Kp; dispKi = Ki; dispKd = Kd;
|
||||
|
||||
double SampleTimeInSec = ((double)SampleTime)/1000;
|
||||
kp = Kp;
|
||||
ki = Ki * SampleTimeInSec;
|
||||
kd = Kd / SampleTimeInSec;
|
||||
|
||||
if(controllerDirection ==REVERSE)
|
||||
{
|
||||
kp = (0 - kp);
|
||||
ki = (0 - ki);
|
||||
kd = (0 - kd);
|
||||
}
|
||||
}
|
||||
|
||||
/* SetSampleTime(...) *********************************************************
|
||||
* sets the period, in Milliseconds, at which the calculation is performed
|
||||
******************************************************************************/
|
||||
void PID::SetSampleTime(int NewSampleTime)
|
||||
{
|
||||
if (NewSampleTime > 0)
|
||||
{
|
||||
double ratio = (double)NewSampleTime
|
||||
/ (double)SampleTime;
|
||||
ki *= ratio;
|
||||
kd /= ratio;
|
||||
SampleTime = (unsigned long)NewSampleTime;
|
||||
}
|
||||
}
|
||||
|
||||
/* SetOutputLimits(...)****************************************************
|
||||
* This function will be used far more often than SetInputLimits. while
|
||||
* the input to the controller will generally be in the 0-1023 range (which is
|
||||
* the default already,) the output will be a little different. maybe they'll
|
||||
* be doing a time window and will need 0-8000 or something. or maybe they'll
|
||||
* want to clamp it from 0-125. who knows. at any rate, that can all be done
|
||||
* here.
|
||||
**************************************************************************/
|
||||
void PID::SetOutputLimits(double Min, double Max)
|
||||
{
|
||||
if(Min >= Max) return;
|
||||
outMin = Min;
|
||||
outMax = Max;
|
||||
|
||||
if(inAuto)
|
||||
{
|
||||
if(*myOutput > outMax) *myOutput = outMax;
|
||||
else if(*myOutput < outMin) *myOutput = outMin;
|
||||
|
||||
if(ITerm > outMax) ITerm= outMax;
|
||||
else if(ITerm < outMin) ITerm= outMin;
|
||||
}
|
||||
}
|
||||
|
||||
/* SetMode(...)****************************************************************
|
||||
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
|
||||
* when the transition from manual to auto occurs, the controller is
|
||||
* automatically initialized
|
||||
******************************************************************************/
|
||||
void PID::SetMode(int Mode)
|
||||
{
|
||||
bool newAuto = (Mode == AUTOMATIC);
|
||||
if(newAuto == !inAuto)
|
||||
{ /*we just went from manual to auto*/
|
||||
PID::Initialize();
|
||||
}
|
||||
inAuto = newAuto;
|
||||
}
|
||||
|
||||
/* Initialize()****************************************************************
|
||||
* does all the things that need to happen to ensure a bumpless transfer
|
||||
* from manual to automatic mode.
|
||||
******************************************************************************/
|
||||
void PID::Initialize()
|
||||
{
|
||||
ITerm = *myOutput;
|
||||
lastInput = *myInput;
|
||||
if(ITerm > outMax) ITerm = outMax;
|
||||
else if(ITerm < outMin) ITerm = outMin;
|
||||
}
|
||||
|
||||
/* SetControllerDirection(...)*************************************************
|
||||
* The PID will either be connected to a DIRECT acting process (+Output leads
|
||||
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
|
||||
* know which one, because otherwise we may increase the output when we should
|
||||
* be decreasing. This is called from the constructor.
|
||||
******************************************************************************/
|
||||
void PID::SetControllerDirection(int Direction)
|
||||
{
|
||||
if(inAuto && Direction !=controllerDirection)
|
||||
{
|
||||
kp = (0 - kp);
|
||||
ki = (0 - ki);
|
||||
kd = (0 - kd);
|
||||
}
|
||||
controllerDirection = Direction;
|
||||
}
|
||||
|
||||
/* Status Funcions*************************************************************
|
||||
* Just because you set the Kp=-1 doesn't mean it actually happened. these
|
||||
* functions query the internal state of the PID. they're here for display
|
||||
* purposes. this are the functions the PID Front-end uses for example
|
||||
******************************************************************************/
|
||||
double PID::GetKp(){ return dispKp; }
|
||||
double PID::GetKi(){ return dispKi;}
|
||||
double PID::GetKd(){ return dispKd;}
|
||||
int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
|
||||
int PID::GetDirection(){ return controllerDirection;}
|
||||
|
@ -0,0 +1,80 @@
|
||||
#ifndef PID_v1_h
|
||||
#define PID_v1_h
|
||||
#define LIBRARY_VERSION 1.0.0
|
||||
|
||||
class PID
|
||||
{
|
||||
|
||||
|
||||
public:
|
||||
|
||||
//Constants used in some of the functions below
|
||||
#define AUTOMATIC 1
|
||||
#define MANUAL 0
|
||||
#define DIRECT 0
|
||||
#define REVERSE 1
|
||||
|
||||
//commonly used functions **************************************************************************
|
||||
PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and
|
||||
double, double, double, int); // Setpoint. Initial tuning parameters are also set here
|
||||
|
||||
void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
|
||||
|
||||
void Compute(); // * performs the PID calculation. it should be
|
||||
// called every time loop() cycles. ON/OFF and
|
||||
// calculation frequency can be set using SetMode
|
||||
// SetSampleTime respectively
|
||||
|
||||
void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
|
||||
//it's likely the user will want to change this depending on
|
||||
//the application
|
||||
|
||||
|
||||
|
||||
//available but not commonly used functions ********************************************************
|
||||
void SetTunings(double, double, // * While most users will set the tunings once in the
|
||||
double); // constructor, this function gives the user the option
|
||||
// of changing tunings during runtime for Adaptive control
|
||||
void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT
|
||||
// means the output will increase when error is positive. REVERSE
|
||||
// means the opposite. it's very unlikely that this will be needed
|
||||
// once it is set in the constructor.
|
||||
void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
|
||||
// the PID calculation is performed. default is 100
|
||||
|
||||
|
||||
|
||||
//Display functions ****************************************************************
|
||||
double GetKp(); // These functions query the pid for interal values.
|
||||
double GetKi(); // they were created mainly for the pid front-end,
|
||||
double GetKd(); // where it's important to know what is actually
|
||||
int GetMode(); // inside the PID.
|
||||
int GetDirection(); //
|
||||
|
||||
private:
|
||||
void Initialize();
|
||||
|
||||
double dispKp; // * we'll hold on to the tuning parameters in user-entered
|
||||
double dispKi; // format for display purposes
|
||||
double dispKd; //
|
||||
|
||||
double kp; // * (P)roportional Tuning Parameter
|
||||
double ki; // * (I)ntegral Tuning Parameter
|
||||
double kd; // * (D)erivative Tuning Parameter
|
||||
|
||||
int controllerDirection;
|
||||
|
||||
double *myInput; // * Pointers to the Input, Output, and Setpoint variables
|
||||
double *myOutput; // This creates a hard link between the variables and the
|
||||
double *mySetpoint; // PID, freeing the user from having to constantly tell us
|
||||
// what these values are. with pointers we'll just know.
|
||||
|
||||
unsigned long lastTime;
|
||||
double ITerm, lastInput;
|
||||
|
||||
int SampleTime;
|
||||
double outMin, outMax;
|
||||
bool inAuto;
|
||||
};
|
||||
#endif
|
||||
|
Loading…
Reference in new issue