parent
f71e36dfda
commit
3b2c0b8751
@ -0,0 +1,161 @@
|
||||
#include <PID_v1.h>
|
||||
#include <PID_AutoTune_v0.h>
|
||||
|
||||
byte ATuneModeRemember=2;
|
||||
double input=80, output=50, setpoint=180;
|
||||
double kp=2,ki=0.5,kd=2;
|
||||
|
||||
double kpmodel=1.5, taup=100, theta[50];
|
||||
double outputStart=5;
|
||||
double aTuneStep=50, aTuneNoise=1, aTuneStartValue=100;
|
||||
unsigned int aTuneLookBack=20;
|
||||
|
||||
boolean tuning = false;
|
||||
unsigned long modelTime, serialTime;
|
||||
|
||||
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
|
||||
PID_ATune aTune(&input, &output);
|
||||
|
||||
//set to false to connect to the real world
|
||||
boolean useSimulation = true;
|
||||
|
||||
void setup()
|
||||
{
|
||||
if(useSimulation)
|
||||
{
|
||||
for(byte i=0;i<50;i++)
|
||||
{
|
||||
theta[i]=outputStart;
|
||||
}
|
||||
modelTime = 0;
|
||||
}
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
tuning=false;
|
||||
changeAutoTune();
|
||||
tuning=true;
|
||||
}
|
||||
|
||||
serialTime = 0;
|
||||
Serial.begin(9600);
|
||||
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
unsigned long now = millis();
|
||||
|
||||
if(!useSimulation)
|
||||
{ //pull the input in from the real world
|
||||
input = analogRead(0);
|
||||
}
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
byte val = (aTune.Runtime());
|
||||
if (val!=0)
|
||||
{
|
||||
tuning = false;
|
||||
}
|
||||
if(!tuning)
|
||||
{ //we're done, set the tuning parameters
|
||||
kp = aTune.GetKp();
|
||||
ki = aTune.GetKi();
|
||||
kd = aTune.GetKd();
|
||||
myPID.SetTunings(kp,ki,kd);
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
else myPID.Compute();
|
||||
|
||||
if(useSimulation)
|
||||
{
|
||||
theta[30]=output;
|
||||
if(now>=modelTime)
|
||||
{
|
||||
modelTime +=100;
|
||||
DoModel();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
analogWrite(0,output);
|
||||
}
|
||||
|
||||
//send-receive with processing if it's time
|
||||
if(millis()>serialTime)
|
||||
{
|
||||
SerialReceive();
|
||||
SerialSend();
|
||||
serialTime+=500;
|
||||
}
|
||||
}
|
||||
|
||||
void changeAutoTune()
|
||||
{
|
||||
if(!tuning)
|
||||
{
|
||||
//Set the output to the desired starting frequency.
|
||||
output=aTuneStartValue;
|
||||
aTune.SetNoiseBand(aTuneNoise);
|
||||
aTune.SetOutputStep(aTuneStep);
|
||||
aTune.SetLookbackSec((int)aTuneLookBack);
|
||||
AutoTuneHelper(true);
|
||||
tuning = true;
|
||||
}
|
||||
else
|
||||
{ //cancel autotune
|
||||
aTune.Cancel();
|
||||
tuning = false;
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
|
||||
void AutoTuneHelper(boolean start)
|
||||
{
|
||||
if(start)
|
||||
ATuneModeRemember = myPID.GetMode();
|
||||
else
|
||||
myPID.SetMode(ATuneModeRemember);
|
||||
}
|
||||
|
||||
|
||||
void SerialSend()
|
||||
{
|
||||
Serial.print("setpoint: ");Serial.print(setpoint); Serial.print(" ");
|
||||
Serial.print("input: ");Serial.print(input); Serial.print(" ");
|
||||
Serial.print("output: ");Serial.print(output); Serial.print(" ");
|
||||
if(tuning){
|
||||
Serial.println("tuning mode");
|
||||
} else {
|
||||
Serial.print("kp: ");Serial.print(myPID.GetKp());Serial.print(" ");
|
||||
Serial.print("ki: ");Serial.print(myPID.GetKi());Serial.print(" ");
|
||||
Serial.print("kd: ");Serial.print(myPID.GetKd());Serial.println();
|
||||
}
|
||||
}
|
||||
|
||||
void SerialReceive()
|
||||
{
|
||||
if(Serial.available())
|
||||
{
|
||||
char b = Serial.read();
|
||||
Serial.flush();
|
||||
if((b=='1' && !tuning) || (b!='1' && tuning))changeAutoTune();
|
||||
}
|
||||
}
|
||||
|
||||
void DoModel()
|
||||
{
|
||||
//cycle the dead time
|
||||
for(byte i=0;i<49;i++)
|
||||
{
|
||||
theta[i] = theta[i+1];
|
||||
}
|
||||
//compute the input
|
||||
input = (kpmodel / taup) *(theta[0]-outputStart) + input*(1-1/taup) + ((float)random(-10,10))/100;
|
||||
|
||||
}
|
@ -0,0 +1,161 @@
|
||||
#include <PID_v1.h>
|
||||
#include <PID_AutoTune_v0.h>
|
||||
|
||||
byte ATuneModeRemember=2;
|
||||
double input=80, output=50, setpoint=180;
|
||||
double kp=2,ki=0.5,kd=2;
|
||||
|
||||
double kpmodel=1.5, taup=100, theta[50];
|
||||
double outputStart=5;
|
||||
double aTuneStep=50, aTuneNoise=1, aTuneStartValue=100;
|
||||
unsigned int aTuneLookBack=20;
|
||||
|
||||
boolean tuning = false;
|
||||
unsigned long modelTime, serialTime;
|
||||
|
||||
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
|
||||
PID_ATune aTune(&input, &output);
|
||||
|
||||
//set to false to connect to the real world
|
||||
boolean useSimulation = true;
|
||||
|
||||
void setup()
|
||||
{
|
||||
if(useSimulation)
|
||||
{
|
||||
for(byte i=0;i<50;i++)
|
||||
{
|
||||
theta[i]=outputStart;
|
||||
}
|
||||
modelTime = 0;
|
||||
}
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
tuning=false;
|
||||
changeAutoTune();
|
||||
tuning=true;
|
||||
}
|
||||
|
||||
serialTime = 0;
|
||||
Serial.begin(9600);
|
||||
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
unsigned long now = millis();
|
||||
|
||||
if(!useSimulation)
|
||||
{ //pull the input in from the real world
|
||||
input = analogRead(0);
|
||||
}
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
byte val = (aTune.Runtime());
|
||||
if (val!=0)
|
||||
{
|
||||
tuning = false;
|
||||
}
|
||||
if(!tuning)
|
||||
{ //we're done, set the tuning parameters
|
||||
kp = aTune.GetKp();
|
||||
ki = aTune.GetKi();
|
||||
kd = aTune.GetKd();
|
||||
myPID.SetTunings(kp,ki,kd);
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
else myPID.Compute();
|
||||
|
||||
if(useSimulation)
|
||||
{
|
||||
theta[30]=output;
|
||||
if(now>=modelTime)
|
||||
{
|
||||
modelTime +=100;
|
||||
DoModel();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
analogWrite(0,output);
|
||||
}
|
||||
|
||||
//send-receive with processing if it's time
|
||||
if(millis()>serialTime)
|
||||
{
|
||||
SerialReceive();
|
||||
SerialSend();
|
||||
serialTime+=500;
|
||||
}
|
||||
}
|
||||
|
||||
void changeAutoTune()
|
||||
{
|
||||
if(!tuning)
|
||||
{
|
||||
//Set the output to the desired starting frequency.
|
||||
output=aTuneStartValue;
|
||||
aTune.SetNoiseBand(aTuneNoise);
|
||||
aTune.SetOutputStep(aTuneStep);
|
||||
aTune.SetLookbackSec((int)aTuneLookBack);
|
||||
AutoTuneHelper(true);
|
||||
tuning = true;
|
||||
}
|
||||
else
|
||||
{ //cancel autotune
|
||||
aTune.Cancel();
|
||||
tuning = false;
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
|
||||
void AutoTuneHelper(boolean start)
|
||||
{
|
||||
if(start)
|
||||
ATuneModeRemember = myPID.GetMode();
|
||||
else
|
||||
myPID.SetMode(ATuneModeRemember);
|
||||
}
|
||||
|
||||
|
||||
void SerialSend()
|
||||
{
|
||||
Serial.print("setpoint: ");Serial.print(setpoint); Serial.print(" ");
|
||||
Serial.print("input: ");Serial.print(input); Serial.print(" ");
|
||||
Serial.print("output: ");Serial.print(output); Serial.print(" ");
|
||||
if(tuning){
|
||||
Serial.println("tuning mode");
|
||||
} else {
|
||||
Serial.print("kp: ");Serial.print(myPID.GetKp());Serial.print(" ");
|
||||
Serial.print("ki: ");Serial.print(myPID.GetKi());Serial.print(" ");
|
||||
Serial.print("kd: ");Serial.print(myPID.GetKd());Serial.println();
|
||||
}
|
||||
}
|
||||
|
||||
void SerialReceive()
|
||||
{
|
||||
if(Serial.available())
|
||||
{
|
||||
char b = Serial.read();
|
||||
Serial.flush();
|
||||
if((b=='1' && !tuning) || (b!='1' && tuning))changeAutoTune();
|
||||
}
|
||||
}
|
||||
|
||||
void DoModel()
|
||||
{
|
||||
//cycle the dead time
|
||||
for(byte i=0;i<49;i++)
|
||||
{
|
||||
theta[i] = theta[i+1];
|
||||
}
|
||||
//compute the input
|
||||
input = (kpmodel / taup) *(theta[0]-outputStart) + input*(1-1/taup) + ((float)random(-10,10))/100;
|
||||
|
||||
}
|
@ -0,0 +1,196 @@
|
||||
#if ARDUINO >= 100
|
||||
#include "Arduino.h"
|
||||
#else
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
#include <PID_AutoTune_v0.h>
|
||||
|
||||
|
||||
PID_ATune::PID_ATune(double* Input, double* Output)
|
||||
{
|
||||
input = Input;
|
||||
output = Output;
|
||||
controlType =0 ; //default to PI
|
||||
noiseBand = 0.5;
|
||||
running = false;
|
||||
oStep = 30;
|
||||
SetLookbackSec(10);
|
||||
lastTime = millis();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void PID_ATune::Cancel()
|
||||
{
|
||||
running = false;
|
||||
}
|
||||
|
||||
int PID_ATune::Runtime()
|
||||
{
|
||||
justevaled=false;
|
||||
if(peakCount>9 && running)
|
||||
{
|
||||
running = false;
|
||||
FinishUp();
|
||||
return 1;
|
||||
}
|
||||
unsigned long now = millis();
|
||||
|
||||
if((now-lastTime)<sampleTime) return false;
|
||||
lastTime = now;
|
||||
double refVal = *input;
|
||||
justevaled=true;
|
||||
if(!running)
|
||||
{ //initialize working variables the first time around
|
||||
peakType = 0;
|
||||
peakCount=0;
|
||||
justchanged=false;
|
||||
absMax=refVal;
|
||||
absMin=refVal;
|
||||
setpoint = refVal;
|
||||
running = true;
|
||||
outputStart = *output;
|
||||
*output = outputStart+oStep;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(refVal>absMax)absMax=refVal;
|
||||
if(refVal<absMin)absMin=refVal;
|
||||
}
|
||||
|
||||
//oscillate the output base on the input's relation to the setpoint
|
||||
|
||||
if(refVal>setpoint+noiseBand) *output = outputStart-oStep;
|
||||
else if (refVal<setpoint-noiseBand) *output = outputStart+oStep;
|
||||
|
||||
|
||||
//bool isMax=true, isMin=true;
|
||||
isMax=true;isMin=true;
|
||||
//id peaks
|
||||
for(int i=nLookBack-1;i>=0;i--)
|
||||
{
|
||||
double val = lastInputs[i];
|
||||
if(isMax) isMax = refVal>val;
|
||||
if(isMin) isMin = refVal<val;
|
||||
lastInputs[i+1] = lastInputs[i];
|
||||
}
|
||||
lastInputs[0] = refVal;
|
||||
if(nLookBack<9)
|
||||
{ //we don't want to trust the maxes or mins until the inputs array has been filled
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(isMax)
|
||||
{
|
||||
if(peakType==0)peakType=1;
|
||||
if(peakType==-1)
|
||||
{
|
||||
peakType = 1;
|
||||
justchanged=true;
|
||||
peak2 = peak1;
|
||||
}
|
||||
peak1 = now;
|
||||
peaks[peakCount] = refVal;
|
||||
|
||||
}
|
||||
else if(isMin)
|
||||
{
|
||||
if(peakType==0)peakType=-1;
|
||||
if(peakType==1)
|
||||
{
|
||||
peakType=-1;
|
||||
peakCount++;
|
||||
justchanged=true;
|
||||
}
|
||||
|
||||
if(peakCount<10)peaks[peakCount] = refVal;
|
||||
}
|
||||
|
||||
if(justchanged && peakCount>2)
|
||||
{ //we've transitioned. check if we can autotune based on the last peaks
|
||||
double avgSeparation = (abs(peaks[peakCount-1]-peaks[peakCount-2])+abs(peaks[peakCount-2]-peaks[peakCount-3]))/2;
|
||||
if( avgSeparation < 0.05*(absMax-absMin))
|
||||
{
|
||||
FinishUp();
|
||||
running = false;
|
||||
return 1;
|
||||
|
||||
}
|
||||
}
|
||||
justchanged=false;
|
||||
return 0;
|
||||
}
|
||||
void PID_ATune::FinishUp()
|
||||
{
|
||||
*output = outputStart;
|
||||
//we can generate tuning parameters!
|
||||
Ku = 4*(2*oStep)/((absMax-absMin)*3.14159);
|
||||
Pu = (double)(peak1-peak2) / 1000;
|
||||
}
|
||||
|
||||
double PID_ATune::GetKp()
|
||||
{
|
||||
return controlType==1 ? 0.6 * Ku : 0.4 * Ku;
|
||||
}
|
||||
|
||||
double PID_ATune::GetKi()
|
||||
{
|
||||
return controlType==1? 1.2*Ku / Pu : 0.48 * Ku / Pu; // Ki = Kc/Ti
|
||||
}
|
||||
|
||||
double PID_ATune::GetKd()
|
||||
{
|
||||
return controlType==1? 0.075 * Ku * Pu : 0; //Kd = Kc * Td
|
||||
}
|
||||
|
||||
void PID_ATune::SetOutputStep(double Step)
|
||||
{
|
||||
oStep = Step;
|
||||
}
|
||||
|
||||
double PID_ATune::GetOutputStep()
|
||||
{
|
||||
return oStep;
|
||||
}
|
||||
|
||||
void PID_ATune::SetControlType(int Type) //0=PI, 1=PID
|
||||
{
|
||||
controlType = Type;
|
||||
}
|
||||
int PID_ATune::GetControlType()
|
||||
{
|
||||
return controlType;
|
||||
}
|
||||
|
||||
void PID_ATune::SetNoiseBand(double Band)
|
||||
{
|
||||
noiseBand = Band;
|
||||
}
|
||||
|
||||
double PID_ATune::GetNoiseBand()
|
||||
{
|
||||
return noiseBand;
|
||||
}
|
||||
|
||||
void PID_ATune::SetLookbackSec(int value)
|
||||
{
|
||||
if (value<1) value = 1;
|
||||
|
||||
if(value<25)
|
||||
{
|
||||
nLookBack = value * 4;
|
||||
sampleTime = 250;
|
||||
}
|
||||
else
|
||||
{
|
||||
nLookBack = 100;
|
||||
sampleTime = value*10;
|
||||
}
|
||||
}
|
||||
|
||||
int PID_ATune::GetLookbackSec()
|
||||
{
|
||||
return nLookBack * sampleTime / 1000;
|
||||
}
|
@ -0,0 +1,55 @@
|
||||
#ifndef PID_AutoTune_v0
|
||||
#define PID_AutoTune_v0
|
||||
#define LIBRARY_VERSION 0.0.1
|
||||
|
||||
class PID_ATune
|
||||
{
|
||||
|
||||
|
||||
public:
|
||||
//commonly used functions **************************************************************************
|
||||
PID_ATune(double*, double*); // * Constructor. links the Autotune to a given PID
|
||||
int Runtime(); // * Similar to the PID Compue function, returns non 0 when done
|
||||
void Cancel(); // * Stops the AutoTune
|
||||
|
||||
void SetOutputStep(double); // * how far above and below the starting value will the output step?
|
||||
double GetOutputStep(); //
|
||||
|
||||
void SetControlType(int); // * Determies if the tuning parameters returned will be PI (D=0)
|
||||
int GetControlType(); // or PID. (0=PI, 1=PID)
|
||||
|
||||
void SetLookbackSec(int); // * how far back are we looking to identify peaks
|
||||
int GetLookbackSec(); //
|
||||
|
||||
void SetNoiseBand(double); // * the autotune will ignore signal chatter smaller than this value
|
||||
double GetNoiseBand(); // this should be acurately set
|
||||
|
||||
double GetKp(); // * once autotune is complete, these functions contain the
|
||||
double GetKi(); // computed tuning parameters.
|
||||
double GetKd(); //
|
||||
|
||||
private:
|
||||
void FinishUp();
|
||||
bool isMax, isMin;
|
||||
double *input, *output;
|
||||
double setpoint;
|
||||
double noiseBand;
|
||||
int controlType;
|
||||
bool running;
|
||||
unsigned long peak1, peak2, lastTime;
|
||||
int sampleTime;
|
||||
int nLookBack;
|
||||
int peakType;
|
||||
double lastInputs[101];
|
||||
double peaks[10];
|
||||
int peakCount;
|
||||
bool justchanged;
|
||||
bool justevaled;
|
||||
double absMax, absMin;
|
||||
double oStep;
|
||||
double outputStart;
|
||||
double Ku, Pu;
|
||||
|
||||
};
|
||||
#endif
|
||||
|
@ -0,0 +1,186 @@
|
||||
/**********************************************************************************************
|
||||
* Arduino PID Library - Version 1
|
||||
* by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
|
||||
*
|
||||
* This Code is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
|
||||
**********************************************************************************************/
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "PID_v1.h"
|
||||
|
||||
/*Constructor (...)*********************************************************
|
||||
* The parameters specified here are those for for which we can't set up
|
||||
* reliable defaults, so we need to have the user set them.
|
||||
***************************************************************************/
|
||||
PID::PID(double* Input, double* Output, double* Setpoint,
|
||||
double Kp, double Ki, double Kd, int ControllerDirection)
|
||||
{
|
||||
PID::SetOutputLimits(0, 255); //default output limit corresponds to
|
||||
//the arduino pwm limits
|
||||
|
||||
SampleTime = 100; //default Controller Sample Time is 0.1 seconds
|
||||
|
||||
PID::SetControllerDirection(ControllerDirection);
|
||||
PID::SetTunings(Kp, Ki, Kd);
|
||||
|
||||
lastTime = millis()-SampleTime;
|
||||
inAuto = false;
|
||||
myOutput = Output;
|
||||
myInput = Input;
|
||||
mySetpoint = Setpoint;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Compute() **********************************************************************
|
||||
* This, as they say, is where the magic happens. this function should be called
|
||||
* every time "void loop()" executes. the function will decide for itself whether a new
|
||||
* pid Output needs to be computed
|
||||
**********************************************************************************/
|
||||
void PID::Compute()
|
||||
{
|
||||
if(!inAuto) return;
|
||||
unsigned long now = millis();
|
||||
int timeChange = (now - lastTime);
|
||||
if(timeChange>=SampleTime)
|
||||
{
|
||||
/*Compute all the working error variables*/
|
||||
double input = *myInput;
|
||||
double error = *mySetpoint - input;
|
||||
ITerm+= (ki * error);
|
||||
if(ITerm > outMax) ITerm= outMax;
|
||||
else if(ITerm < outMin) ITerm= outMin;
|
||||
double dInput = (input - lastInput);
|
||||
|
||||
/*Compute PID Output*/
|
||||
double output = kp * error + ITerm- kd * dInput;
|
||||
|
||||
if(output > outMax) output = outMax;
|
||||
else if(output < outMin) output = outMin;
|
||||
*myOutput = output;
|
||||
|
||||
/*Remember some variables for next time*/
|
||||
lastInput = input;
|
||||
lastTime = now;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* SetTunings(...)*************************************************************
|
||||
* This function allows the controller's dynamic performance to be adjusted.
|
||||
* it's called automatically from the constructor, but tunings can also
|
||||
* be adjusted on the fly during normal operation
|
||||
******************************************************************************/
|
||||
void PID::SetTunings(double Kp, double Ki, double Kd)
|
||||
{
|
||||
if (Kp<0 || Ki<0 || Kd<0) return;
|
||||
|
||||
dispKp = Kp; dispKi = Ki; dispKd = Kd;
|
||||
|
||||
double SampleTimeInSec = ((double)SampleTime)/1000;
|
||||
kp = Kp;
|
||||
ki = Ki * SampleTimeInSec;
|
||||
kd = Kd / SampleTimeInSec;
|
||||
|
||||
if(controllerDirection ==REVERSE)
|
||||
{
|
||||
kp = (0 - kp);
|
||||
ki = (0 - ki);
|
||||
kd = (0 - kd);
|
||||
}
|
||||
}
|
||||
|
||||
/* SetSampleTime(...) *********************************************************
|
||||
* sets the period, in Milliseconds, at which the calculation is performed
|
||||
******************************************************************************/
|
||||
void PID::SetSampleTime(int NewSampleTime)
|
||||
{
|
||||
if (NewSampleTime > 0)
|
||||
{
|
||||
double ratio = (double)NewSampleTime
|
||||
/ (double)SampleTime;
|
||||
ki *= ratio;
|
||||
kd /= ratio;
|
||||
SampleTime = (unsigned long)NewSampleTime;
|
||||
}
|
||||
}
|
||||
|
||||
/* SetOutputLimits(...)****************************************************
|
||||
* This function will be used far more often than SetInputLimits. while
|
||||
* the input to the controller will generally be in the 0-1023 range (which is
|
||||
* the default already,) the output will be a little different. maybe they'll
|
||||
* be doing a time window and will need 0-8000 or something. or maybe they'll
|
||||
* want to clamp it from 0-125. who knows. at any rate, that can all be done
|
||||
* here.
|
||||
**************************************************************************/
|
||||
void PID::SetOutputLimits(double Min, double Max)
|
||||
{
|
||||
if(Min >= Max) return;
|
||||
outMin = Min;
|
||||
outMax = Max;
|
||||
|
||||
if(inAuto)
|
||||
{
|
||||
if(*myOutput > outMax) *myOutput = outMax;
|
||||
else if(*myOutput < outMin) *myOutput = outMin;
|
||||
|
||||
if(ITerm > outMax) ITerm= outMax;
|
||||
else if(ITerm < outMin) ITerm= outMin;
|
||||
}
|
||||
}
|
||||
|
||||
/* SetMode(...)****************************************************************
|
||||
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
|
||||
* when the transition from manual to auto occurs, the controller is
|
||||
* automatically initialized
|
||||
******************************************************************************/
|
||||
void PID::SetMode(int Mode)
|
||||
{
|
||||
bool newAuto = (Mode == AUTOMATIC);
|
||||
if(newAuto == !inAuto)
|
||||
{ /*we just went from manual to auto*/
|
||||
PID::Initialize();
|
||||
}
|
||||
inAuto = newAuto;
|
||||
}
|
||||
|
||||
/* Initialize()****************************************************************
|
||||
* does all the things that need to happen to ensure a bumpless transfer
|
||||
* from manual to automatic mode.
|
||||
******************************************************************************/
|
||||
void PID::Initialize()
|
||||
{
|
||||
ITerm = *myOutput;
|
||||
lastInput = *myInput;
|
||||
if(ITerm > outMax) ITerm = outMax;
|
||||
else if(ITerm < outMin) ITerm = outMin;
|
||||
}
|
||||
|
||||
/* SetControllerDirection(...)*************************************************
|
||||
* The PID will either be connected to a DIRECT acting process (+Output leads
|
||||
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
|
||||
* know which one, because otherwise we may increase the output when we should
|
||||
* be decreasing. This is called from the constructor.
|
||||
******************************************************************************/
|
||||
void PID::SetControllerDirection(int Direction)
|
||||
{
|
||||
if(inAuto && Direction !=controllerDirection)
|
||||
{
|
||||
kp = (0 - kp);
|
||||
ki = (0 - ki);
|
||||
kd = (0 - kd);
|
||||
}
|
||||
controllerDirection = Direction;
|
||||
}
|
||||
|
||||
/* Status Funcions*************************************************************
|
||||
* Just because you set the Kp=-1 doesn't mean it actually happened. these
|
||||
* functions query the internal state of the PID. they're here for display
|
||||
* purposes. this are the functions the PID Front-end uses for example
|
||||
******************************************************************************/
|
||||
double PID::GetKp(){ return dispKp; }
|
||||
double PID::GetKi(){ return dispKi;}
|
||||
double PID::GetKd(){ return dispKd;}
|
||||
int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
|
||||
int PID::GetDirection(){ return controllerDirection;}
|
||||
|
@ -0,0 +1,80 @@
|
||||
#ifndef PID_v1_h
|
||||
#define PID_v1_h
|
||||
#define LIBRARY_VERSION 1.0.0
|
||||
|
||||
class PID
|
||||
{
|
||||
|
||||
|
||||
public:
|
||||
|
||||
//Constants used in some of the functions below
|
||||
#define AUTOMATIC 1
|
||||
#define MANUAL 0
|
||||
#define DIRECT 0
|
||||
#define REVERSE 1
|
||||
|
||||
//commonly used functions **************************************************************************
|
||||
PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and
|
||||
double, double, double, int); // Setpoint. Initial tuning parameters are also set here
|
||||
|
||||
void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
|
||||
|
||||
void Compute(); // * performs the PID calculation. it should be
|
||||
// called every time loop() cycles. ON/OFF and
|
||||
// calculation frequency can be set using SetMode
|
||||
// SetSampleTime respectively
|
||||
|
||||
void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
|
||||
//it's likely the user will want to change this depending on
|
||||
//the application
|
||||
|
||||
|
||||
|
||||
//available but not commonly used functions ********************************************************
|
||||
void SetTunings(double, double, // * While most users will set the tunings once in the
|
||||
double); // constructor, this function gives the user the option
|
||||
// of changing tunings during runtime for Adaptive control
|
||||
void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT
|
||||
// means the output will increase when error is positive. REVERSE
|
||||
// means the opposite. it's very unlikely that this will be needed
|
||||
// once it is set in the constructor.
|
||||
void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
|
||||
// the PID calculation is performed. default is 100
|
||||
|
||||
|
||||
|
||||
//Display functions ****************************************************************
|
||||
double GetKp(); // These functions query the pid for interal values.
|
||||
double GetKi(); // they were created mainly for the pid front-end,
|
||||
double GetKd(); // where it's important to know what is actually
|
||||
int GetMode(); // inside the PID.
|
||||
int GetDirection(); //
|
||||
|
||||
private:
|
||||
void Initialize();
|
||||
|
||||
double dispKp; // * we'll hold on to the tuning parameters in user-entered
|
||||
double dispKi; // format for display purposes
|
||||
double dispKd; //
|
||||
|
||||
double kp; // * (P)roportional Tuning Parameter
|
||||
double ki; // * (I)ntegral Tuning Parameter
|
||||
double kd; // * (D)erivative Tuning Parameter
|
||||
|
||||
int controllerDirection;
|
||||
|
||||
double *myInput; // * Pointers to the Input, Output, and Setpoint variables
|
||||
double *myOutput; // This creates a hard link between the variables and the
|
||||
double *mySetpoint; // PID, freeing the user from having to constantly tell us
|
||||
// what these values are. with pointers we'll just know.
|
||||
|
||||
unsigned long lastTime;
|
||||
double ITerm, lastInput;
|
||||
|
||||
int SampleTime;
|
||||
double outMin, outMax;
|
||||
bool inAuto;
|
||||
};
|
||||
#endif
|
||||
|
@ -0,0 +1,161 @@
|
||||
#include <PID_v1.h>
|
||||
#include <PID_AutoTune_v0.h>
|
||||
|
||||
byte ATuneModeRemember=2;
|
||||
double input=80, output=50, setpoint=180;
|
||||
double kp=2,ki=0.5,kd=2;
|
||||
|
||||
double kpmodel=1.5, taup=100, theta[50];
|
||||
double outputStart=5;
|
||||
double aTuneStep=50, aTuneNoise=1, aTuneStartValue=100;
|
||||
unsigned int aTuneLookBack=20;
|
||||
|
||||
boolean tuning = false;
|
||||
unsigned long modelTime, serialTime;
|
||||
|
||||
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
|
||||
PID_ATune aTune(&input, &output);
|
||||
|
||||
//set to false to connect to the real world
|
||||
boolean useSimulation = true;
|
||||
|
||||
void setup()
|
||||
{
|
||||
if(useSimulation)
|
||||
{
|
||||
for(byte i=0;i<50;i++)
|
||||
{
|
||||
theta[i]=outputStart;
|
||||
}
|
||||
modelTime = 0;
|
||||
}
|
||||
//Setup the pid
|
||||
myPID.SetMode(AUTOMATIC);
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
tuning=false;
|
||||
changeAutoTune();
|
||||
tuning=true;
|
||||
}
|
||||
|
||||
serialTime = 0;
|
||||
Serial.begin(9600);
|
||||
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
unsigned long now = millis();
|
||||
|
||||
if(!useSimulation)
|
||||
{ //pull the input in from the real world
|
||||
input = analogRead(0);
|
||||
}
|
||||
|
||||
if(tuning)
|
||||
{
|
||||
byte val = (aTune.Runtime());
|
||||
if (val!=0)
|
||||
{
|
||||
tuning = false;
|
||||
}
|
||||
if(!tuning)
|
||||
{ //we're done, set the tuning parameters
|
||||
kp = aTune.GetKp();
|
||||
ki = aTune.GetKi();
|
||||
kd = aTune.GetKd();
|
||||
myPID.SetTunings(kp,ki,kd);
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
else myPID.Compute();
|
||||
|
||||
if(useSimulation)
|
||||
{
|
||||
theta[30]=output;
|
||||
if(now>=modelTime)
|
||||
{
|
||||
modelTime +=100;
|
||||
DoModel();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
analogWrite(0,output);
|
||||
}
|
||||
|
||||
//send-receive with processing if it's time
|
||||
if(millis()>serialTime)
|
||||
{
|
||||
SerialReceive();
|
||||
SerialSend();
|
||||
serialTime+=500;
|
||||
}
|
||||
}
|
||||
|
||||
void changeAutoTune()
|
||||
{
|
||||
if(!tuning)
|
||||
{
|
||||
//Set the output to the desired starting frequency.
|
||||
output=aTuneStartValue;
|
||||
aTune.SetNoiseBand(aTuneNoise);
|
||||
aTune.SetOutputStep(aTuneStep);
|
||||
aTune.SetLookbackSec((int)aTuneLookBack);
|
||||
AutoTuneHelper(true);
|
||||
tuning = true;
|
||||
}
|
||||
else
|
||||
{ //cancel autotune
|
||||
aTune.Cancel();
|
||||
tuning = false;
|
||||
AutoTuneHelper(false);
|
||||
}
|
||||
}
|
||||
|
||||
void AutoTuneHelper(boolean start)
|
||||
{
|
||||
if(start)
|
||||
ATuneModeRemember = myPID.GetMode();
|
||||
else
|
||||
myPID.SetMode(ATuneModeRemember);
|
||||
}
|
||||
|
||||
|
||||
void SerialSend()
|
||||
{
|
||||
Serial.print("setpoint: ");Serial.print(setpoint); Serial.print(" ");
|
||||
Serial.print("input: ");Serial.print(input); Serial.print(" ");
|
||||
Serial.print("output: ");Serial.print(output); Serial.print(" ");
|
||||
if(tuning){
|
||||
Serial.println("tuning mode");
|
||||
} else {
|
||||
Serial.print("kp: ");Serial.print(myPID.GetKp());Serial.print(" ");
|
||||
Serial.print("ki: ");Serial.print(myPID.GetKi());Serial.print(" ");
|
||||
Serial.print("kd: ");Serial.print(myPID.GetKd());Serial.println();
|
||||
}
|
||||
}
|
||||
|
||||
void SerialReceive()
|
||||
{
|
||||
if(Serial.available())
|
||||
{
|
||||
char b = Serial.read();
|
||||
Serial.flush();
|
||||
if((b=='1' && !tuning) || (b!='1' && tuning))changeAutoTune();
|
||||
}
|
||||
}
|
||||
|
||||
void DoModel()
|
||||
{
|
||||
//cycle the dead time
|
||||
for(byte i=0;i<49;i++)
|
||||
{
|
||||
theta[i] = theta[i+1];
|
||||
}
|
||||
//compute the input
|
||||
input = (kpmodel / taup) *(theta[0]-outputStart) + input*(1-1/taup) + ((float)random(-10,10))/100;
|
||||
|
||||
}
|
@ -0,0 +1,196 @@
|
||||
#if ARDUINO >= 100
|
||||
#include "Arduino.h"
|
||||
#else
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
#include <PID_AutoTune_v0.h>
|
||||
|
||||
|
||||
PID_ATune::PID_ATune(double* Input, double* Output)
|
||||
{
|
||||
input = Input;
|
||||
output = Output;
|
||||
controlType =0 ; //default to PI
|
||||
noiseBand = 0.5;
|
||||
running = false;
|
||||
oStep = 30;
|
||||
SetLookbackSec(10);
|
||||
lastTime = millis();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void PID_ATune::Cancel()
|
||||
{
|
||||
running = false;
|
||||
}
|
||||
|
||||
int PID_ATune::Runtime()
|
||||
{
|
||||
justevaled=false;
|
||||
if(peakCount>9 && running)
|
||||
{
|
||||
running = false;
|
||||
FinishUp();
|
||||
return 1;
|
||||
}
|
||||
unsigned long now = millis();
|
||||
|
||||
if((now-lastTime)<sampleTime) return false;
|
||||
lastTime = now;
|
||||
double refVal = *input;
|
||||
justevaled=true;
|
||||
if(!running)
|
||||
{ //initialize working variables the first time around
|
||||
peakType = 0;
|
||||
peakCount=0;
|
||||
justchanged=false;
|
||||
absMax=refVal;
|
||||
absMin=refVal;
|
||||
setpoint = refVal;
|
||||
running = true;
|
||||
outputStart = *output;
|
||||
*output = outputStart+oStep;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(refVal>absMax)absMax=refVal;
|
||||
if(refVal<absMin)absMin=refVal;
|
||||
}
|
||||
|
||||
//oscillate the output base on the input's relation to the setpoint
|
||||
|
||||
if(refVal>setpoint+noiseBand) *output = outputStart-oStep;
|
||||
else if (refVal<setpoint-noiseBand) *output = outputStart+oStep;
|
||||
|
||||
|
||||
//bool isMax=true, isMin=true;
|
||||
isMax=true;isMin=true;
|
||||
//id peaks
|
||||
for(int i=nLookBack-1;i>=0;i--)
|
||||
{
|
||||
double val = lastInputs[i];
|
||||
if(isMax) isMax = refVal>val;
|
||||
if(isMin) isMin = refVal<val;
|
||||
lastInputs[i+1] = lastInputs[i];
|
||||
}
|
||||
lastInputs[0] = refVal;
|
||||
if(nLookBack<9)
|
||||
{ //we don't want to trust the maxes or mins until the inputs array has been filled
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(isMax)
|
||||
{
|
||||
if(peakType==0)peakType=1;
|
||||
if(peakType==-1)
|
||||
{
|
||||
peakType = 1;
|
||||
justchanged=true;
|
||||
peak2 = peak1;
|
||||
}
|
||||
peak1 = now;
|
||||
peaks[peakCount] = refVal;
|
||||
|
||||
}
|
||||
else if(isMin)
|
||||
{
|
||||
if(peakType==0)peakType=-1;
|
||||
if(peakType==1)
|
||||
{
|
||||
peakType=-1;
|
||||
peakCount++;
|
||||
justchanged=true;
|
||||
}
|
||||
|
||||
if(peakCount<10)peaks[peakCount] = refVal;
|
||||
}
|
||||
|
||||
if(justchanged && peakCount>2)
|
||||
{ //we've transitioned. check if we can autotune based on the last peaks
|
||||
double avgSeparation = (abs(peaks[peakCount-1]-peaks[peakCount-2])+abs(peaks[peakCount-2]-peaks[peakCount-3]))/2;
|
||||
if( avgSeparation < 0.05*(absMax-absMin))
|
||||
{
|
||||
FinishUp();
|
||||
running = false;
|
||||
return 1;
|
||||
|
||||
}
|
||||
}
|
||||
justchanged=false;
|
||||
return 0;
|
||||
}
|
||||
void PID_ATune::FinishUp()
|
||||
{
|
||||
*output = outputStart;
|
||||
//we can generate tuning parameters!
|
||||
Ku = 4*(2*oStep)/((absMax-absMin)*3.14159);
|
||||
Pu = (double)(peak1-peak2) / 1000;
|
||||
}
|
||||
|
||||
double PID_ATune::GetKp()
|
||||
{
|
||||
return controlType==1 ? 0.6 * Ku : 0.4 * Ku;
|
||||
}
|
||||
|
||||
double PID_ATune::GetKi()
|
||||
{
|
||||
return controlType==1? 1.2*Ku / Pu : 0.48 * Ku / Pu; // Ki = Kc/Ti
|
||||
}
|
||||
|
||||
double PID_ATune::GetKd()
|
||||
{
|
||||
return controlType==1? 0.075 * Ku * Pu : 0; //Kd = Kc * Td
|
||||
}
|
||||
|
||||
void PID_ATune::SetOutputStep(double Step)
|
||||
{
|
||||
oStep = Step;
|
||||
}
|
||||
|
||||
double PID_ATune::GetOutputStep()
|
||||
{
|
||||
return oStep;
|
||||
}
|
||||
|
||||
void PID_ATune::SetControlType(int Type) //0=PI, 1=PID
|
||||
{
|
||||
controlType = Type;
|
||||
}
|
||||
int PID_ATune::GetControlType()
|
||||
{
|
||||
return controlType;
|
||||
}
|
||||
|
||||
void PID_ATune::SetNoiseBand(double Band)
|
||||
{
|
||||
noiseBand = Band;
|
||||
}
|
||||
|
||||
double PID_ATune::GetNoiseBand()
|
||||
{
|
||||
return noiseBand;
|
||||
}
|
||||
|
||||
void PID_ATune::SetLookbackSec(int value)
|
||||
{
|
||||
if (value<1) value = 1;
|
||||
|
||||
if(value<25)
|
||||
{
|
||||
nLookBack = value * 4;
|
||||
sampleTime = 250;
|
||||
}
|
||||
else
|
||||
{
|
||||
nLookBack = 100;
|
||||
sampleTime = value*10;
|
||||
}
|
||||
}
|
||||
|
||||
int PID_ATune::GetLookbackSec()
|
||||
{
|
||||
return nLookBack * sampleTime / 1000;
|
||||
}
|
@ -0,0 +1,55 @@
|
||||
#ifndef PID_AutoTune_v0
|
||||
#define PID_AutoTune_v0
|
||||
#define LIBRARY_VERSION 0.0.1
|
||||
|
||||
class PID_ATune
|
||||
{
|
||||
|
||||
|
||||
public:
|
||||
//commonly used functions **************************************************************************
|
||||
PID_ATune(double*, double*); // * Constructor. links the Autotune to a given PID
|
||||
int Runtime(); // * Similar to the PID Compue function, returns non 0 when done
|
||||
void Cancel(); // * Stops the AutoTune
|
||||
|
||||
void SetOutputStep(double); // * how far above and below the starting value will the output step?
|
||||
double GetOutputStep(); //
|
||||
|
||||
void SetControlType(int); // * Determies if the tuning parameters returned will be PI (D=0)
|
||||
int GetControlType(); // or PID. (0=PI, 1=PID)
|
||||
|
||||
void SetLookbackSec(int); // * how far back are we looking to identify peaks
|
||||
int GetLookbackSec(); //
|
||||
|
||||
void SetNoiseBand(double); // * the autotune will ignore signal chatter smaller than this value
|
||||
double GetNoiseBand(); // this should be acurately set
|
||||
|
||||
double GetKp(); // * once autotune is complete, these functions contain the
|
||||
double GetKi(); // computed tuning parameters.
|
||||
double GetKd(); //
|
||||
|
||||
private:
|
||||
void FinishUp();
|
||||
bool isMax, isMin;
|
||||
double *input, *output;
|
||||
double setpoint;
|
||||
double noiseBand;
|
||||
int controlType;
|
||||
bool running;
|
||||
unsigned long peak1, peak2, lastTime;
|
||||
int sampleTime;
|
||||
int nLookBack;
|
||||
int peakType;
|
||||
double lastInputs[101];
|
||||
double peaks[10];
|
||||
int peakCount;
|
||||
bool justchanged;
|
||||
bool justevaled;
|
||||
double absMax, absMin;
|
||||
double oStep;
|
||||
double outputStart;
|
||||
double Ku, Pu;
|
||||
|
||||
};
|
||||
#endif
|
||||
|
@ -0,0 +1,37 @@
|
||||
/**********************************************************************************************
|
||||
* Arduino PID AutoTune Library - Version 0.0.1
|
||||
* by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
|
||||
*
|
||||
* This Library is ported from the AutotunerPID Toolkit by William Spinelli
|
||||
* (http://www.mathworks.com/matlabcentral/fileexchange/4652)
|
||||
* Copyright (c) 2004
|
||||
*
|
||||
* This Library is licensed under the BSD License:
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the distribution
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
**********************************************************************************************/
|
||||
|
||||
Note: I'd really hoped to have this more polished before release, but with the
|
||||
osPID coming out I felt that this needed to be out there NOW. if you
|
||||
encounter any issues please contact me, or post to the diy-pid-control
|
||||
google group.
|
||||
|
@ -0,0 +1,180 @@
|
||||
/* i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle.
|
||||
|
||||
|
||||
read a rotary encoder with interrupts
|
||||
Encoder hooked up with common to GROUND,
|
||||
encoder0PinA to pin 2, encoder0PinB to pin 4 (or pin 3 see below)
|
||||
it doesn't matter which encoder pin you use for A or B
|
||||
|
||||
is possible to change PID costants by sending on serial interfaces the values separated by ',' in this order: KP,KD,KI
|
||||
example: 5.2,3.1,0 so we have KP=5.2 KD=3.1 KI=0 is only for testing purposes,
|
||||
but i will leave this function with eeprom storage
|
||||
|
||||
*/
|
||||
|
||||
#include <digitalWriteFast.h> //this is to use DWF library, it will increase the speed of digitalRead/Write command
|
||||
//used in the interrupt function doEncoderMotor0, but may be used everywhere.
|
||||
|
||||
#define encoder0PinA 2
|
||||
#define encoder0PinB 4
|
||||
|
||||
#define SpeedPin 9
|
||||
#define DirectionPin 8
|
||||
|
||||
//from ramps 1.4 stepper driver
|
||||
#define STEP_PIN 3
|
||||
#define DIR_PIN 12
|
||||
#define ENABLE_PIN 13
|
||||
|
||||
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long target = 0;
|
||||
long target1 = 0;
|
||||
int amp=212;
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
//PID controller constants
|
||||
float KP = 6.0 ; //position multiplier (gain) 2.25
|
||||
float KI = 0.1; // Intergral multiplier (gain) .25
|
||||
float KD = 1.3; // derivative multiplier (gain) 1.0
|
||||
|
||||
int lastError = 0;
|
||||
int sumError = 0;
|
||||
|
||||
//Integral term min/max (random value and not yet tested/verified)
|
||||
int iMax = 100;
|
||||
int iMin = 0;
|
||||
|
||||
long previousTarget = 0;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
long interval = 5; // interval at which to blink (milliseconds)
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
|
||||
pinMode(DirectionPin, OUTPUT);
|
||||
pinMode(SpeedPin, OUTPUT);
|
||||
|
||||
//ramps 1.4 motor control
|
||||
pinMode(STEP_PIN, INPUT);
|
||||
pinMode(DIR_PIN, INPUT);
|
||||
|
||||
attachInterrupt(0, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep, RISING); //on pin 3
|
||||
|
||||
Serial.begin (115200);
|
||||
Serial.println("start"); // a personal quirk
|
||||
|
||||
}
|
||||
|
||||
void loop(){
|
||||
|
||||
while (Serial.available() > 0) {
|
||||
KP = Serial.parseFloat();
|
||||
KD = Serial.parseFloat();
|
||||
KI = Serial.parseFloat();
|
||||
|
||||
|
||||
Serial.println(KP);
|
||||
Serial.println(KD);
|
||||
Serial.println(KI);
|
||||
}
|
||||
|
||||
/*if(millis() - previousTarget > 500){ //enable this code only for test purposes
|
||||
Serial.print(encoder0Pos);
|
||||
Serial.print(',');
|
||||
Serial.println(target1);
|
||||
previousTarget=millis();
|
||||
}*/
|
||||
|
||||
target = target1;
|
||||
docalc();
|
||||
}
|
||||
|
||||
void docalc() {
|
||||
|
||||
if (millis() - previousMillis > interval)
|
||||
{
|
||||
previousMillis = millis(); // remember the last time we blinked the LED
|
||||
|
||||
long error = encoder0Pos - target ; // find the error term of current position - target
|
||||
|
||||
//generalized PID formula
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
long ms = KP * error + KD * (error - lastError) +KI * (sumError);
|
||||
|
||||
lastError = error;
|
||||
sumError += error;
|
||||
|
||||
//scale the sum for the integral term
|
||||
if(sumError > iMax) {
|
||||
sumError = iMax;
|
||||
} else if(sumError < iMin){
|
||||
sumError = iMin;
|
||||
}
|
||||
|
||||
if(ms > 0){
|
||||
digitalWrite ( DirectionPin ,HIGH );
|
||||
}
|
||||
if(ms < 0){
|
||||
digitalWrite ( DirectionPin , LOW );
|
||||
ms = -1 * ms;
|
||||
}
|
||||
|
||||
int motorspeed = map(ms,0,amp,0,255);
|
||||
if( motorspeed >= 255) motorspeed=255;
|
||||
//analogWrite ( SpeedPin, (255 - motorSpeed) );
|
||||
analogWrite ( SpeedPin, motorspeed );
|
||||
//Serial.print ( ms );
|
||||
//Serial.print ( ',' );
|
||||
//Serial.println ( motorspeed );
|
||||
}
|
||||
}
|
||||
|
||||
void doEncoderMotor0(){
|
||||
if (digitalReadFast2(encoder0PinA) == HIGH) { // found a low-to-high on channel A
|
||||
if (digitalReadFast2(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
}
|
||||
else // found a high-to-low on channel A
|
||||
{
|
||||
if (digitalReadFast2(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void countStep(){
|
||||
dir = digitalRead(DIR_PIN);
|
||||
if (dir) target1++;
|
||||
else target1--;
|
||||
}
|
@ -0,0 +1,191 @@
|
||||
#include <digitalWriteFast.h>
|
||||
|
||||
/* i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle.
|
||||
|
||||
|
||||
read a rotary encoder with interrupts
|
||||
Encoder hooked up with common to GROUND,
|
||||
encoder0PinA to pin 2, encoder0PinB to pin 4 (or pin 3 see below)
|
||||
it doesn't matter which encoder pin you use for A or B
|
||||
|
||||
is possible to change PID costants by sending on serial interfaces the values separated by ',' in this order: KP,KD,KI
|
||||
example: 5.2,3.1,0 so we have KP=5.2 KD=3.1 KI=0 is only for testing purposes, but i will leave this function with eeprom storage
|
||||
|
||||
*/
|
||||
|
||||
#define encoder0PinA 2 // PD2;
|
||||
#define encoder0PinB 8 // PB0;
|
||||
|
||||
#define SpeedPin 6
|
||||
#define DirectionPin 15 //PC1;
|
||||
|
||||
//from ramps 1.4 stepper driver
|
||||
#define STEP_PIN 3 //PD3;
|
||||
#define DIR_PIN 14 //PC0;
|
||||
//#define ENABLE_PIN 13 //PB5; for now is USELESS
|
||||
|
||||
//to use current motor as speed control, the LMD18245 has 4 bit cuttent output
|
||||
//#define M0 9 //assign 4 bit from PORTB register to current control -> Bxx0000x (x mean any)
|
||||
//#define M1 10 // PB1; PB2; PB3; PB4
|
||||
//#define M2 11
|
||||
//#define M3 12
|
||||
|
||||
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long target = 0;
|
||||
long target1 = 0;
|
||||
int amp=212;
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
//PID controller constants
|
||||
float KP = 6.0 ; //position multiplier (gain) 2.25
|
||||
float KI = 0.1; // Intergral multiplier (gain) .25
|
||||
float KD = 1.3; // derivative multiplier (gain) 1.0
|
||||
|
||||
int lastError = 0;
|
||||
int sumError = 0;
|
||||
|
||||
//Integral term min/max (random value and not yet tested/verified)
|
||||
int iMax = 100;
|
||||
int iMin = 0;
|
||||
|
||||
long previousTarget = 0;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
long interval = 5; // interval at which to blink (milliseconds)
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
pinModeFast(2, INPUT);
|
||||
pinModeFast(encoder0PinA, INPUT);
|
||||
pinModeFast(encoder0PinB, INPUT);
|
||||
|
||||
pinModeFast(DirectionPin, OUTPUT);
|
||||
//pinMode(SpeedPin, OUTPUT);
|
||||
|
||||
//ramps 1.4 motor control
|
||||
pinModeFast(STEP_PIN, INPUT);
|
||||
pinModeFast(DIR_PIN, INPUT);
|
||||
//pinModeFast(M0,OUTPUT);
|
||||
//pinModeFast(M1,OUTPUT);
|
||||
//pinModeFast(M2,OUTPUT);
|
||||
//pinModeFast(M3,OUTPUT);
|
||||
|
||||
attachInterrupt(0, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep, RISING); //on pin 3
|
||||
|
||||
Serial.begin (115200);
|
||||
Serial.println("start"); // a personal quirk
|
||||
|
||||
}
|
||||
|
||||
void loop(){
|
||||
|
||||
while (Serial.available() > 0) {
|
||||
KP = Serial.parseFloat();
|
||||
KD = Serial.parseFloat();
|
||||
KI = Serial.parseFloat();
|
||||
|
||||
|
||||
Serial.println(KP);
|
||||
Serial.println(KD);
|
||||
Serial.println(KI);
|
||||
}
|
||||
|
||||
if(millis() - previousTarget > 1000){ //enable this code only for test purposes because it loss a lot of time
|
||||
Serial.print(encoder0Pos);
|
||||
Serial.print(',');
|
||||
Serial.println(target1);
|
||||
previousTarget=millis();
|
||||
}
|
||||
|
||||
target = target1;
|
||||
docalc();
|
||||
}
|
||||
|
||||
void docalc() {
|
||||
|
||||
if (millis() - previousMillis > interval)
|
||||
{
|
||||
previousMillis = millis(); // remember the last time we blinked the LED
|
||||
|
||||
long error = encoder0Pos - target ; // find the error term of current position - target
|
||||
|
||||
//generalized PID formula
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
long ms = KP * error + KD * (error - lastError) +KI * (sumError);
|
||||
|
||||
lastError = error;
|
||||
sumError += error;
|
||||
|
||||
//scale the sum for the integral term
|
||||
if(sumError > iMax) {
|
||||
sumError = iMax;
|
||||
} else if(sumError < iMin){
|
||||
sumError = iMin;
|
||||
}
|
||||
|
||||
if(ms > 0){
|
||||
PORTC |=B00000010; //digitalWriteFast2 ( DirectionPin ,HIGH ); write PC1 HIGH
|
||||
}
|
||||
if(ms < 0){
|
||||
PORTC &=(B11111101); //digitalWriteFast2 ( DirectionPin , LOW ); write PC1 LOW
|
||||
ms = -1 * ms;
|
||||
}
|
||||
|
||||
int motorspeed = map(ms,0,amp,0,255);
|
||||
if( motorspeed >= 255) motorspeed=255;
|
||||
//PORTB |=(motorspeed<<1); // is a sort of: digitalwrite(M0 M1 M2 M3, 0 0 0 0 to 1 1 1 1); it set directly PORTB to B**M3M2M1M0*;
|
||||
//analogWrite ( SpeedPin, (255 - motorSpeed) );
|
||||
analogWrite ( SpeedPin, motorspeed );
|
||||
//Serial.print ( ms );
|
||||
//Serial.print ( ',' );
|
||||
//Serial.println ( motorspeed );
|
||||
}
|
||||
}
|
||||
|
||||
void doEncoderMotor0(){
|
||||
if (((PIND&B0000100)>>2) == HIGH) { // found a low-to-high on channel A; if(digitalRead(encoderPinA)==HIGH){.... read PB0
|
||||
// because PD0is used for serial, i will change in the stable version TO USE PD2
|
||||
if ((PINB&B0000001) == LOW) { // check channel B to see which way; if(digitalRead(encoderPinB)==LOW){.... read PB0
|
||||
// encoder is turning
|
||||
encoder0Pos-- ; // CCW
|
||||
}
|
||||
else {
|
||||
encoder0Pos++ ; // CW
|
||||
}
|
||||
}
|
||||
else // found a high-to-low on channel A
|
||||
{
|
||||
if ((PINB&B0000001) == LOW) { // check channel B to see which way; if(digitalRead(encoderPinB)==LOW){.... read PB0
|
||||
// encoder is turning
|
||||
encoder0Pos++ ; // CW
|
||||
}
|
||||
else {
|
||||
encoder0Pos-- ; // CCW
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void countStep(){
|
||||
dir = (PINC&B0000001); // dir=digitalRead(dir_pin) read PC0, 14 digital;
|
||||
//here will be (PINB&B0000001) to not use shift in the stable version
|
||||
if (dir) target1++;
|
||||
else target1--;
|
||||
}
|
@ -0,0 +1,175 @@
|
||||
/* i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle.
|
||||
|
||||
|
||||
read a rotary encoder with interrupts
|
||||
Encoder hooked up with common to GROUND,
|
||||
encoder0PinA to pin 2, encoder0PinB to pin 4 (or pin 3 see below)
|
||||
it doesn't matter which encoder pin you use for A or B
|
||||
|
||||
is possible to change PID costants by sending on SerialUSB interfaces the values separated by ',' in this order: KP,KD,KI
|
||||
example: 5.2,3.1,0 so we have KP=5.2 KD=3.1 KI=0 is only for testing purposes, but i will leave this function with eeprom storage
|
||||
|
||||
*/
|
||||
|
||||
#define encoder0PinA 2
|
||||
#define encoder0PinB 4
|
||||
|
||||
#define SpeedPin 9
|
||||
#define DirectionPin 8
|
||||
|
||||
//from ramps 1.4 stepper driver
|
||||
#define STEP_PIN 3
|
||||
#define DIR_PIN 12
|
||||
#define ENABLE_PIN 13
|
||||
|
||||
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long target = 0;
|
||||
long target1 = 0;
|
||||
int amp=212;
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
//PID controller constants
|
||||
float KP = 6.0 ; //position multiplier (gain) 2.25
|
||||
float KI = 0.1; // Intergral multiplier (gain) .25
|
||||
float KD = 1.3; // derivative multiplier (gain) 1.0
|
||||
|
||||
int lastError = 0;
|
||||
int sumError = 0;
|
||||
|
||||
//Integral term min/max (random value and not yet tested/verified)
|
||||
int iMax = 100;
|
||||
int iMin = 0;
|
||||
|
||||
long previousTarget = 0;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
long interval = 5; // interval at which to blink (milliseconds)
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
|
||||
pinMode(DirectionPin, OUTPUT);
|
||||
pinMode(SpeedPin, OUTPUT);
|
||||
|
||||
//ramps 1.4 motor control
|
||||
pinMode(STEP_PIN, INPUT);
|
||||
pinMode(DIR_PIN, INPUT);
|
||||
|
||||
attachInterrupt(2, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(3, countStep, RISING); //on pin 3
|
||||
|
||||
SerialUSB.println("start"); // a personal quirk
|
||||
|
||||
}
|
||||
|
||||
void loop(){
|
||||
|
||||
while (SerialUSB.available() > 0) {
|
||||
KP = SerialUSB.read();
|
||||
KD = SerialUSB.read();
|
||||
KI = SerialUSB.read();
|
||||
|
||||
|
||||
SerialUSB.println(KP);
|
||||
SerialUSB.println(KD);
|
||||
SerialUSB.println(KI);
|
||||
}
|
||||
|
||||
if(millis() - previousTarget > 500){ //enable this code only for test purposes
|
||||
SerialUSB.print(encoder0Pos);
|
||||
SerialUSB.print(',');
|
||||
SerialUSB.println(target1);
|
||||
previousTarget=millis();
|
||||
}
|
||||
|
||||
target = target1;
|
||||
docalc();
|
||||
}
|
||||
|
||||
void docalc() {
|
||||
|
||||
if (millis() - previousMillis > interval)
|
||||
{
|
||||
previousMillis = millis(); // remember the last time we blinked the LED
|
||||
|
||||
long error = encoder0Pos - target ; // find the error term of current position - target
|
||||
|
||||
//generalized PID formula
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
long ms = KP * error + KD * (error - lastError) +KI * (sumError);
|
||||
|
||||
lastError = error;
|
||||
sumError += error;
|
||||
|
||||
//scale the sum for the integral term
|
||||
if(sumError > iMax) {
|
||||
sumError = iMax;
|
||||
} else if(sumError < iMin){
|
||||
sumError = iMin;
|
||||
}
|
||||
|
||||
if(ms > 0){
|
||||
digitalWrite ( DirectionPin ,HIGH );
|
||||
}
|
||||
if(ms < 0){
|
||||
digitalWrite ( DirectionPin , LOW );
|
||||
ms = -1 * ms;
|
||||
}
|
||||
|
||||
int motorspeed = map(ms,0,amp,0,255);
|
||||
if( motorspeed >= 255) motorspeed=255;
|
||||
//analogWrite ( SpeedPin, (255 - motorSpeed) );
|
||||
analogWrite ( SpeedPin, motorspeed );
|
||||
//SerialUSB.print ( ms );
|
||||
//SerialUSB.print ( ',' );
|
||||
//SerialUSB.println ( motorspeed );
|
||||
}
|
||||
}
|
||||
|
||||
void doEncoderMotor0(){
|
||||
if (digitalRead(encoder0PinA) == HIGH) { // found a low-to-high on channel A
|
||||
if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
}
|
||||
else // found a high-to-low on channel A
|
||||
{
|
||||
if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void countStep(){
|
||||
dir = digitalRead(DIR_PIN);
|
||||
if (dir) target1++;
|
||||
else target1--;
|
||||
}
|
@ -0,0 +1,20 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For DigitalWriteFast
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
DigitalWriteFast KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
digitalWriteFast KEYWORD2
|
||||
digitalWriteFast2 KEYWORD2
|
||||
pinModeFast KEYWORD2
|
||||
pinModeFast2 KEYWORD2
|
||||
digitalReadFast KEYWORD2
|
||||
digitalReadFast2 KEYWORD2
|
@ -0,0 +1,192 @@
|
||||
#include <digitalWriteFast.h>
|
||||
|
||||
/* i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle.
|
||||
|
||||
|
||||
read a rotary encoder with interrupts
|
||||
Encoder hooked up with common to GROUND,
|
||||
encoder0PinA to pin 2, encoder0PinB to pin 4 (or pin 3 see below)
|
||||
it doesn't matter which encoder pin you use for A or B
|
||||
|
||||
is possible to change PID costants by sending on serial interfaces the values separated by ',' in this order: KP,KD,KI
|
||||
example: 5.2,3.1,0 so we have KP=5.2 KD=3.1 KI=0 is only for testing purposes, but i will leave this function with eeprom storage
|
||||
|
||||
*/
|
||||
|
||||
#define encoder0PinA 7 // PD2;
|
||||
#define encoder0PinB 8 // PB0;
|
||||
|
||||
#define SpeedPin 10
|
||||
#define DirectionPin 9 //PC1;
|
||||
|
||||
//from ramps 1.4 stepper driver
|
||||
#define STEP_PIN 3 //PD3;
|
||||
#define DIR_PIN 5 //PC0;
|
||||
//#define ENABLE_PIN 13 //PB5; for now is USELESS
|
||||
|
||||
//to use current motor as speed control, the LMD18245 has 4 bit cuttent output
|
||||
//#define M0 9 //assign 4 bit from PORTB register to current control -> Bxx0000x (x mean any)
|
||||
//#define M1 10 // PB1; PB2; PB3; PB4
|
||||
//#define M2 11
|
||||
//#define M3 12
|
||||
|
||||
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long target = 0;
|
||||
long target1 = 0;
|
||||
int amp=212;
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
//PID controller constants
|
||||
float KP = 6.0 ; //position multiplier (gain) 2.25
|
||||
float KI = 0.1; // Intergral multiplier (gain) .25
|
||||
float KD = 1.3; // derivative multiplier (gain) 1.0
|
||||
|
||||
int lastError = 0;
|
||||
int sumError = 0;
|
||||
|
||||
//Integral term min/max (random value and not yet tested/verified)
|
||||
int iMax = 100;
|
||||
int iMin = 0;
|
||||
|
||||
long previousTarget = 0;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
long interval = 5; // interval at which to blink (milliseconds)
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
pinModeFast(2, INPUT);
|
||||
pinModeFast(encoder0PinA, INPUT);
|
||||
pinModeFast(encoder0PinB, INPUT);
|
||||
|
||||
pinModeFast(DirectionPin, OUTPUT);
|
||||
//pinMode(SpeedPin, OUTPUT);
|
||||
|
||||
//ramps 1.4 motor control
|
||||
pinModeFast(STEP_PIN, INPUT);
|
||||
pinModeFast(DIR_PIN, INPUT);
|
||||
//pinModeFast(M0,OUTPUT);
|
||||
//pinModeFast(M1,OUTPUT);
|
||||
//pinModeFast(M2,OUTPUT);
|
||||
//pinModeFast(M3,OUTPUT);
|
||||
|
||||
attachInterrupt(0, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(1, countStep, RISING); //on pin 3
|
||||
|
||||
Serial.begin (115200);
|
||||
Serial.println("start"); // a personal quirk
|
||||
|
||||
}
|
||||
|
||||
void loop(){
|
||||
|
||||
while (Serial.available() > 0) {
|
||||
KP = Serial.parseFloat();
|
||||
KD = Serial.parseFloat();
|
||||
KI = Serial.parseFloat();
|
||||
|
||||
|
||||
Serial.println(KP);
|
||||
Serial.println(KD);
|
||||
Serial.println(KI);
|
||||
}
|
||||
|
||||
if(millis() - previousTarget > 1000){ //enable this code only for test purposes because it loss a lot of time
|
||||
Serial.print(encoder0Pos);
|
||||
Serial.print(',');
|
||||
Serial.println(target1);
|
||||
previousTarget=millis();
|
||||
}
|
||||
|
||||
target = target1;
|
||||
docalc();
|
||||
}
|
||||
|
||||
void docalc() {
|
||||
|
||||
if (millis() - previousMillis > interval)
|
||||
{
|
||||
previousMillis = millis(); // remember the last time we blinked the LED
|
||||
|
||||
long error = encoder0Pos - target ; // find the error term of current position - target
|
||||
|
||||
//generalized PID formula
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
long ms = KP * error + KD * (error - lastError) +KI * (sumError);
|
||||
|
||||
lastError = error;
|
||||
sumError += error;
|
||||
|
||||
//scale the sum for the integral term
|
||||
if(sumError > iMax) {
|
||||
sumError = iMax;
|
||||
} else if(sumError < iMin){
|
||||
sumError = iMin;
|
||||
}
|
||||
|
||||
if(ms > 0){
|
||||
PORTC |=B00000010; //digitalWriteFast2 ( DirectionPin ,HIGH ); write PC1 HIGH
|
||||
}
|
||||
if(ms < 0){
|
||||
PORTC &=(B11111101); //digitalWriteFast2 ( DirectionPin , LOW ); write PC1 LOW
|
||||
ms = -1 * ms;
|
||||
}
|
||||
|
||||
int motorspeed = map(ms,0,amp,0,255);
|
||||
if( motorspeed >= 255) motorspeed=255;
|
||||
//PORTB |=(motorspeed<<1); // is a sort of: digitalwrite(M0 M1 M2 M3, 0 0 0 0 to 1 1 1 1); it set directly PORTB to B**M3M2M1M0*;
|
||||
//analogWrite ( SpeedPin, (255 - motorSpeed) );
|
||||
analogWrite ( SpeedPin, motorspeed );
|
||||
//Serial.print ( ms );
|
||||
//Serial.print ( ',' );
|
||||
//Serial.println ( motorspeed );
|
||||
}
|
||||
}
|
||||
|
||||
void doEncoderMotor0(){
|
||||
if (((PIND&B0000100)>>2) == HIGH) { // found a low-to-high on channel A; if(digitalRead(encoderPinA)==HIGH){.... read PB0
|
||||
// because PD0is used for serial, i will change in the stable version TO USE PD2
|
||||
if ((PINB&B0000001) == LOW) { // check channel B to see which way; if(digitalRead(encoderPinB)==LOW){.... read PB0
|
||||
// encoder is turning
|
||||
encoder0Pos-- ; // CCW
|
||||
}
|
||||
else {
|
||||
encoder0Pos++ ; // CW
|
||||
}
|
||||
}
|
||||
else // found a high-to-low on channel A
|
||||
{
|
||||
if ((PINB&B0000001) == LOW) { // check channel B to see which way; if(digitalRead(encoderPinB)==LOW){.... read PB0
|
||||
// encoder is turning
|
||||
encoder0Pos++ ; // CW
|
||||
}
|
||||
else {
|
||||
encoder0Pos-- ; // CCW
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void countStep(){
|
||||
dir = (PINC&B0000001); // dir=digitalRead(dir_pin) read PC0, 14 digital;
|
||||
//here will be (PINB&B0000001) to not use shift in the stable version
|
||||
if (dir) target1++;
|
||||
else target1--;
|
||||
}
|
||||
|
@ -0,0 +1,165 @@
|
||||
#if !defined(digitalPinToPortReg)
|
||||
#if !defined(__AVR_ATmega1280__)
|
||||
|
||||
// Standard Arduino Pins
|
||||
#define digitalPinToPortReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &PORTD : (((P) >= 8 && (P) <= 13) ? &PORTB : &PORTC))
|
||||
#define digitalPinToDDRReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &DDRD : (((P) >= 8 && (P) <= 13) ? &DDRB : &DDRC))
|
||||
#define digitalPinToPINReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &PIND : (((P) >= 8 && (P) <= 13) ? &PINB : &PINC))
|
||||
#define digitalPinToBit(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? (P) : (((P) >= 8 && (P) <= 13) ? (P) - 8 : (P) - 14))
|
||||
|
||||
#if defined(__AVR_ATmega8__)
|
||||
|
||||
// 3 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 9 || (P) == 10) ? &TCCR1A : (((P) == 11) ? &TCCR2 : 0))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 9) ? COM1A1 : (((P) == 10) ? COM1B1 : COM21))
|
||||
#else
|
||||
|
||||
// 6 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 6 || (P) == 5) ? &TCCR0A : \
|
||||
(((P) == 9 || (P) == 10) ? &TCCR1A : \
|
||||
(((P) == 11 || (P) == 3) ? &TCCR2A : 0)))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 6) ? COM0A1 : (((P) == 5) ? COM0B1 : \
|
||||
(((P) == 9) ? COM1A1 : (((P) == 10) ? COM1B1 : \
|
||||
(((P) == 11) ? COM2A1 : COM2B1)))))
|
||||
#endif
|
||||
|
||||
#else
|
||||
// Arduino Mega Pins
|
||||
#define digitalPinToPortReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &PORTA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &PORTB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &PORTC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &PORTD : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &PORTE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &PORTF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &PORTG : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &PORTH : \
|
||||
(((P) == 14 || (P) == 15) ? &PORTJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &PORTK : &PORTL))))))))))
|
||||
|
||||
#define digitalPinToDDRReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &DDRA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &DDRB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &DDRC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &DDRD : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &DDRE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &DDRF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &DDRG : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &DDRH : \
|
||||
(((P) == 14 || (P) == 15) ? &DDRJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &DDRK : &DDRL))))))))))
|
||||
|
||||
#define digitalPinToPINReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &PINA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &PINB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &PINC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &PIND : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &PINE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &PINF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &PING : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &PINH : \
|
||||
(((P) == 14 || (P) == 15) ? &PINJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &PINK : &PINL))))))))))
|
||||
|
||||
#define digitalPinToBit(P) \
|
||||
(((P) >= 7 && (P) <= 9) ? (P) - 3 : \
|
||||
(((P) >= 10 && (P) <= 13) ? (P) - 6 : \
|
||||
(((P) >= 22 && (P) <= 29) ? (P) - 22 : \
|
||||
(((P) >= 30 && (P) <= 37) ? 37 - (P) : \
|
||||
(((P) >= 39 && (P) <= 41) ? 41 - (P) : \
|
||||
(((P) >= 42 && (P) <= 49) ? 49 - (P) : \
|
||||
(((P) >= 50 && (P) <= 53) ? 53 - (P) : \
|
||||
(((P) >= 54 && (P) <= 61) ? (P) - 54 : \
|
||||
(((P) >= 62 && (P) <= 69) ? (P) - 62 : \
|
||||
(((P) == 0 || (P) == 15 || (P) == 17 || (P) == 21) ? 0 : \
|
||||
(((P) == 1 || (P) == 14 || (P) == 16 || (P) == 20) ? 1 : \
|
||||
(((P) == 19) ? 2 : \
|
||||
(((P) == 5 || (P) == 6 || (P) == 18) ? 3 : \
|
||||
(((P) == 2) ? 4 : \
|
||||
(((P) == 3 || (P) == 4) ? 5 : 7)))))))))))))))
|
||||
|
||||
// 15 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 13 || (P) == 4) ? &TCCR0A : \
|
||||
(((P) == 11 || (P) == 12) ? &TCCR1A : \
|
||||
(((P) == 10 || (P) == 9) ? &TCCR2A : \
|
||||
(((P) == 5 || (P) == 2 || (P) == 3) ? &TCCR3A : \
|
||||
(((P) == 6 || (P) == 7 || (P) == 8) ? &TCCR4A : \
|
||||
(((P) == 46 || (P) == 45 || (P) == 44) ? &TCCR5A : 0))))))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 13) ? COM0A1 : (((P) == 4) ? COM0B1 : \
|
||||
(((P) == 11) ? COM1A1 : (((P) == 12) ? COM1B1 : \
|
||||
(((P) == 10) ? COM2A1 : (((P) == 9) ? COM2B1 : \
|
||||
(((P) == 5) ? COM3A1 : (((P) == 2) ? COM3B1 : (((P) == 3) ? COM3C1 : \
|
||||
(((P) == 6) ? COM4A1 : (((P) == 7) ? COM4B1 : (((P) == 8) ? COM4C1 : \
|
||||
(((P) == 46) ? COM5A1 : (((P) == 45) ? COM5B1 : COM5C1))))))))))))))
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !defined(digitalWriteFast)
|
||||
#define digitalWriteFast(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
if (digitalPinToTimer(P)) \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)); \
|
||||
bitWrite(*digitalPinToPortReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
digitalWrite((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(pinModeFast)
|
||||
#define pinModeFast(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
bitWrite(*digitalPinToDDRReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
pinMode((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(digitalReadFast)
|
||||
#define digitalReadFast(P) ( (int) __digitalReadFast__((P)) )
|
||||
#define __digitalReadFast__(P ) \
|
||||
(__builtin_constant_p(P) ) ? ( \
|
||||
digitalPinToTimer(P) ? ( \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)) , \
|
||||
bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) : \
|
||||
bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) : \
|
||||
digitalRead((P))
|
||||
#endif
|
||||
|
||||
#if !defined(digitalWriteFast2)
|
||||
#define digitalWriteFast2(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
bitWrite(*digitalPinToPortReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
digitalWrite((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(pinModeFast2)
|
||||
#define pinModeFast2(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
if (digitalPinToTimer(P)) \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)); \
|
||||
bitWrite(*digitalPinToDDRReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
pinMode((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(digitalReadFast2)
|
||||
#define digitalReadFast2(P) ( (int) __digitalReadFast2__((P)) )
|
||||
#define __digitalReadFast2__(P ) \
|
||||
(__builtin_constant_p(P) ) ? ( \
|
||||
( bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) ) : \
|
||||
digitalRead((P))
|
||||
#endif
|
@ -0,0 +1,339 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
{description}
|
||||
Copyright (C) {year} {fullname}
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
{signature of Ty Coon}, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
@ -0,0 +1,46 @@
|
||||
ServoStrap
|
||||
==========
|
||||
|
||||
servo-controlled reprap 3D printer:
|
||||
|
||||
this code take as input stepper information from a standard 3D printer motherboard
|
||||
and use it to control a servo-motor with active position tracker.
|
||||
|
||||
i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle to make an integrated board aesy to add to ramps 1.4 or other printer motherboard
|
||||
|
||||
improvements:
|
||||
|
||||
1)moore faster movements on x-y axys, it mean less time to wait to print a part
|
||||
|
||||
2)less noise from the motors, it will be silent
|
||||
|
||||
3)the couple of the motor not decrease with the speed (like in a stepper motor)
|
||||
|
||||
4)active position tracking, no more step losses,
|
||||
almost all prints will end in perfect condition because if something stop
|
||||
the head it will return to the print position
|
||||
|
||||
5)less price to build a printer, almost all electronic woste (like 2D printers)
|
||||
have inside dc motors with all needed to control it
|
||||
|
||||
6)resolution increased by fine setting PID costants and using angular encoder, doesn't matter if is slit disk or magnetic
|
||||
|
||||
7)potentially endstops are not needed because the timing strip have special code at the begin/end
|
||||
that can be interpreted as endstop
|
||||
|
||||
|
||||
To use the code you need first to put the two files called digitalWriteFast.h and Keywords.txt in a folder inside arduino/libraries
|
||||
|
||||
|
||||
here the youtube link of the test with this code: http://goo.gl/gAia5y
|
@ -0,0 +1,175 @@
|
||||
/* i have made this code for the LMD18245 motor controller,
|
||||
i have merged the pid code of Josh Kopel
|
||||
whith the code of makerbot servo-controller board,
|
||||
you can use this code on the some board changing some values.
|
||||
Daniele Poddighe
|
||||
|
||||
external ardware require a quadrature encoder, timing slit strip and a dc motor,
|
||||
all you can find inside an old printer, i have took it from canon and hp printers(psc1510)
|
||||
|
||||
for motor controll you can choose different type of H-bridge, i have used LMD18245,
|
||||
you can order 3 of it on ti.com sample request, the hardware needed is explained on the datasheet but i'm drowing
|
||||
the schematic and PCB layout on eagle.
|
||||
|
||||
|
||||
read a rotary encoder with interrupts
|
||||
Encoder hooked up with common to GROUND,
|
||||
encoder0PinA to pin 2, encoder0PinB to pin 4 (or pin 3 see below)
|
||||
it doesn't matter which encoder pin you use for A or B
|
||||
|
||||
is possible to change PID costants by sending on SerialUSB interfaces the values separated by ',' in this order: KP,KD,KI
|
||||
example: 5.2,3.1,0 so we have KP=5.2 KD=3.1 KI=0 is only for testing purposes, but i will leave this function with eeprom storage
|
||||
|
||||
*/
|
||||
|
||||
#define encoder0PinA 2
|
||||
#define encoder0PinB 4
|
||||
|
||||
#define SpeedPin 9
|
||||
#define DirectionPin 8
|
||||
|
||||
//from ramps 1.4 stepper driver
|
||||
#define STEP_PIN 3
|
||||
#define DIR_PIN 12
|
||||
#define ENABLE_PIN 13
|
||||
|
||||
|
||||
volatile long encoder0Pos = 0;
|
||||
|
||||
long target = 0;
|
||||
long target1 = 0;
|
||||
int amp=212;
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
//PID controller constants
|
||||
float KP = 6.0 ; //position multiplier (gain) 2.25
|
||||
float KI = 0.1; // Intergral multiplier (gain) .25
|
||||
float KD = 1.3; // derivative multiplier (gain) 1.0
|
||||
|
||||
int lastError = 0;
|
||||
int sumError = 0;
|
||||
|
||||
//Integral term min/max (random value and not yet tested/verified)
|
||||
int iMax = 100;
|
||||
int iMin = 0;
|
||||
|
||||
long previousTarget = 0;
|
||||
long previousMillis = 0; // will store last time LED was updated
|
||||
long interval = 5; // interval at which to blink (milliseconds)
|
||||
|
||||
//for motor control ramps 1.4
|
||||
bool newStep = false;
|
||||
bool oldStep = false;
|
||||
bool dir = false;
|
||||
|
||||
void setup() {
|
||||
|
||||
pinMode(encoder0PinA, INPUT);
|
||||
pinMode(encoder0PinB, INPUT);
|
||||
|
||||
pinMode(DirectionPin, OUTPUT);
|
||||
pinMode(SpeedPin, OUTPUT);
|
||||
|
||||
//ramps 1.4 motor control
|
||||
pinMode(STEP_PIN, INPUT);
|
||||
pinMode(DIR_PIN, INPUT);
|
||||
|
||||
attachInterrupt(2, doEncoderMotor0, CHANGE); // encoder pin on interrupt 0 - pin 2
|
||||
attachInterrupt(3, countStep, RISING); //on pin 3
|
||||
|
||||
SerialUSB.println("start"); // a personal quirk
|
||||
|
||||
}
|
||||
|
||||
void loop(){
|
||||
|
||||
while (SerialUSB.available() > 0) {
|
||||
KP = SerialUSB.read();
|
||||
KD = SerialUSB.read();
|
||||
KI = SerialUSB.read();
|
||||
|
||||
|
||||
SerialUSB.println(KP);
|
||||
SerialUSB.println(KD);
|
||||
SerialUSB.println(KI);
|
||||
}
|
||||
|
||||
if(millis() - previousTarget > 500){ //enable this code only for test purposes
|
||||
SerialUSB.print(encoder0Pos);
|
||||
SerialUSB.print(',');
|
||||
SerialUSB.println(target1);
|
||||
previousTarget=millis();
|
||||
}
|
||||
|
||||
target = target1;
|
||||
docalc();
|
||||
}
|
||||
|
||||
void docalc() {
|
||||
|
||||
if (millis() - previousMillis > interval)
|
||||
{
|
||||
previousMillis = millis(); // remember the last time we blinked the LED
|
||||
|
||||
long error = encoder0Pos - target ; // find the error term of current position - target
|
||||
|
||||
//generalized PID formula
|
||||
//correction = Kp * error + Kd * (error - prevError) + kI * (sum of errors)
|
||||
long ms = KP * error + KD * (error - lastError) +KI * (sumError);
|
||||
|
||||
lastError = error;
|
||||
sumError += error;
|
||||
|
||||
//scale the sum for the integral term
|
||||
if(sumError > iMax) {
|
||||
sumError = iMax;
|
||||
} else if(sumError < iMin){
|
||||
sumError = iMin;
|
||||
}
|
||||
|
||||
if(ms > 0){
|
||||
digitalWrite ( DirectionPin ,HIGH );
|
||||
}
|
||||
if(ms < 0){
|
||||
digitalWrite ( DirectionPin , LOW );
|
||||
ms = -1 * ms;
|
||||
}
|
||||
|
||||
int motorspeed = map(ms,0,amp,0,255);
|
||||
if( motorspeed >= 255) motorspeed=255;
|
||||
//analogWrite ( SpeedPin, (255 - motorSpeed) );
|
||||
analogWrite ( SpeedPin, motorspeed );
|
||||
//SerialUSB.print ( ms );
|
||||
//SerialUSB.print ( ',' );
|
||||
//SerialUSB.println ( motorspeed );
|
||||
}
|
||||
}
|
||||
|
||||
void doEncoderMotor0(){
|
||||
if (digitalRead(encoder0PinA) == HIGH) { // found a low-to-high on channel A
|
||||
if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
}
|
||||
else // found a high-to-low on channel A
|
||||
{
|
||||
if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
|
||||
// encoder is turning
|
||||
encoder0Pos = encoder0Pos + 1; // CW
|
||||
}
|
||||
else {
|
||||
encoder0Pos = encoder0Pos - 1; // CCW
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void countStep(){
|
||||
dir = digitalRead(DIR_PIN);
|
||||
if (dir) target1++;
|
||||
else target1--;
|
||||
}
|
@ -0,0 +1,165 @@
|
||||
#if !defined(digitalPinToPortReg)
|
||||
#if !defined(__AVR_ATmega1280__)
|
||||
|
||||
// Standard Arduino Pins
|
||||
#define digitalPinToPortReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &PORTD : (((P) >= 8 && (P) <= 13) ? &PORTB : &PORTC))
|
||||
#define digitalPinToDDRReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &DDRD : (((P) >= 8 && (P) <= 13) ? &DDRB : &DDRC))
|
||||
#define digitalPinToPINReg(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? &PIND : (((P) >= 8 && (P) <= 13) ? &PINB : &PINC))
|
||||
#define digitalPinToBit(P) \
|
||||
(((P) >= 0 && (P) <= 7) ? (P) : (((P) >= 8 && (P) <= 13) ? (P) - 8 : (P) - 14))
|
||||
|
||||
#if defined(__AVR_ATmega8__)
|
||||
|
||||
// 3 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 9 || (P) == 10) ? &TCCR1A : (((P) == 11) ? &TCCR2 : 0))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 9) ? COM1A1 : (((P) == 10) ? COM1B1 : COM21))
|
||||
#else
|
||||
|
||||
// 6 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 6 || (P) == 5) ? &TCCR0A : \
|
||||
(((P) == 9 || (P) == 10) ? &TCCR1A : \
|
||||
(((P) == 11 || (P) == 3) ? &TCCR2A : 0)))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 6) ? COM0A1 : (((P) == 5) ? COM0B1 : \
|
||||
(((P) == 9) ? COM1A1 : (((P) == 10) ? COM1B1 : \
|
||||
(((P) == 11) ? COM2A1 : COM2B1)))))
|
||||
#endif
|
||||
|
||||
#else
|
||||
// Arduino Mega Pins
|
||||
#define digitalPinToPortReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &PORTA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &PORTB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &PORTC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &PORTD : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &PORTE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &PORTF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &PORTG : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &PORTH : \
|
||||
(((P) == 14 || (P) == 15) ? &PORTJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &PORTK : &PORTL))))))))))
|
||||
|
||||
#define digitalPinToDDRReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &DDRA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &DDRB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &DDRC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &DDRD : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &DDRE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &DDRF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &DDRG : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &DDRH : \
|
||||
(((P) == 14 || (P) == 15) ? &DDRJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &DDRK : &DDRL))))))))))
|
||||
|
||||
#define digitalPinToPINReg(P) \
|
||||
(((P) >= 22 && (P) <= 29) ? &PINA : \
|
||||
((((P) >= 10 && (P) <= 13) || ((P) >= 50 && (P) <= 53)) ? &PINB : \
|
||||
(((P) >= 30 && (P) <= 37) ? &PINC : \
|
||||
((((P) >= 18 && (P) <= 21) || (P) == 38) ? &PIND : \
|
||||
((((P) >= 0 && (P) <= 3) || (P) == 5) ? &PINE : \
|
||||
(((P) >= 54 && (P) <= 61) ? &PINF : \
|
||||
((((P) >= 39 && (P) <= 41) || (P) == 4) ? &PING : \
|
||||
((((P) >= 6 && (P) <= 9) || (P) == 16 || (P) == 17) ? &PINH : \
|
||||
(((P) == 14 || (P) == 15) ? &PINJ : \
|
||||
(((P) >= 62 && (P) <= 69) ? &PINK : &PINL))))))))))
|
||||
|
||||
#define digitalPinToBit(P) \
|
||||
(((P) >= 7 && (P) <= 9) ? (P) - 3 : \
|
||||
(((P) >= 10 && (P) <= 13) ? (P) - 6 : \
|
||||
(((P) >= 22 && (P) <= 29) ? (P) - 22 : \
|
||||
(((P) >= 30 && (P) <= 37) ? 37 - (P) : \
|
||||
(((P) >= 39 && (P) <= 41) ? 41 - (P) : \
|
||||
(((P) >= 42 && (P) <= 49) ? 49 - (P) : \
|
||||
(((P) >= 50 && (P) <= 53) ? 53 - (P) : \
|
||||
(((P) >= 54 && (P) <= 61) ? (P) - 54 : \
|
||||
(((P) >= 62 && (P) <= 69) ? (P) - 62 : \
|
||||
(((P) == 0 || (P) == 15 || (P) == 17 || (P) == 21) ? 0 : \
|
||||
(((P) == 1 || (P) == 14 || (P) == 16 || (P) == 20) ? 1 : \
|
||||
(((P) == 19) ? 2 : \
|
||||
(((P) == 5 || (P) == 6 || (P) == 18) ? 3 : \
|
||||
(((P) == 2) ? 4 : \
|
||||
(((P) == 3 || (P) == 4) ? 5 : 7)))))))))))))))
|
||||
|
||||
// 15 PWM
|
||||
#define digitalPinToTimer(P) \
|
||||
(((P) == 13 || (P) == 4) ? &TCCR0A : \
|
||||
(((P) == 11 || (P) == 12) ? &TCCR1A : \
|
||||
(((P) == 10 || (P) == 9) ? &TCCR2A : \
|
||||
(((P) == 5 || (P) == 2 || (P) == 3) ? &TCCR3A : \
|
||||
(((P) == 6 || (P) == 7 || (P) == 8) ? &TCCR4A : \
|
||||
(((P) == 46 || (P) == 45 || (P) == 44) ? &TCCR5A : 0))))))
|
||||
#define digitalPinToTimerBit(P) \
|
||||
(((P) == 13) ? COM0A1 : (((P) == 4) ? COM0B1 : \
|
||||
(((P) == 11) ? COM1A1 : (((P) == 12) ? COM1B1 : \
|
||||
(((P) == 10) ? COM2A1 : (((P) == 9) ? COM2B1 : \
|
||||
(((P) == 5) ? COM3A1 : (((P) == 2) ? COM3B1 : (((P) == 3) ? COM3C1 : \
|
||||
(((P) == 6) ? COM4A1 : (((P) == 7) ? COM4B1 : (((P) == 8) ? COM4C1 : \
|
||||
(((P) == 46) ? COM5A1 : (((P) == 45) ? COM5B1 : COM5C1))))))))))))))
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !defined(digitalWriteFast)
|
||||
#define digitalWriteFast(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
if (digitalPinToTimer(P)) \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)); \
|
||||
bitWrite(*digitalPinToPortReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
digitalWrite((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(pinModeFast)
|
||||
#define pinModeFast(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
bitWrite(*digitalPinToDDRReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
pinMode((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(digitalReadFast)
|
||||
#define digitalReadFast(P) ( (int) __digitalReadFast__((P)) )
|
||||
#define __digitalReadFast__(P ) \
|
||||
(__builtin_constant_p(P) ) ? ( \
|
||||
digitalPinToTimer(P) ? ( \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)) , \
|
||||
bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) : \
|
||||
bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) : \
|
||||
digitalRead((P))
|
||||
#endif
|
||||
|
||||
#if !defined(digitalWriteFast2)
|
||||
#define digitalWriteFast2(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
bitWrite(*digitalPinToPortReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
digitalWrite((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(pinModeFast2)
|
||||
#define pinModeFast2(P, V) \
|
||||
if (__builtin_constant_p(P) && __builtin_constant_p(V)) { \
|
||||
if (digitalPinToTimer(P)) \
|
||||
bitClear(*digitalPinToTimer(P), digitalPinToTimerBit(P)); \
|
||||
bitWrite(*digitalPinToDDRReg(P), digitalPinToBit(P), (V)); \
|
||||
} else { \
|
||||
pinMode((P), (V)); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(digitalReadFast2)
|
||||
#define digitalReadFast2(P) ( (int) __digitalReadFast2__((P)) )
|
||||
#define __digitalReadFast2__(P ) \
|
||||
(__builtin_constant_p(P) ) ? ( \
|
||||
( bitRead(*digitalPinToPINReg(P), digitalPinToBit(P))) ) : \
|
||||
digitalRead((P))
|
||||
#endif
|
@ -0,0 +1,20 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For DigitalWriteFast
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
DigitalWriteFast KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
digitalWriteFast KEYWORD2
|
||||
digitalWriteFast2 KEYWORD2
|
||||
pinModeFast KEYWORD2
|
||||
pinModeFast2 KEYWORD2
|
||||
digitalReadFast KEYWORD2
|
||||
digitalReadFast2 KEYWORD2
|
Loading…
Reference in new issue